Photovoltaics: A review of cell and module technologies

This review centers on the status, and future directions of the cell and module technologies, with emphasis on the research and development aspects. The framework is established with a consideration of the historical parameters of photovoltaics and each particular technology approach. The problems and strengths of the single-crystal, polycrystalline, and amorphous technologies are discussed, compared, and assessed. Single- and multiple junction or tandem cell configurations are evaluated for performance, processing, and engineering criteria. Thin-film technologies are highlighted as emerging, low-cost options for terrestrial applications and markets. Discussions focus on the fundamental building block for the photovoltaic system, the solar cell, but important module developments and issues are cited. Future research and technology directions are examined, including issues that are considered important for the development of the specific materials, cell, and module approaches. Novel technologies and new research areas are surveyed as potential photovoltaic options of the future.

[1]  J. P. Connolly,et al.  Quantum-Well Solar Cells , 1993, Physica E: Low-dimensional Systems and Nanostructures.

[2]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[3]  R. H. Bube,et al.  Effect of Microstructure of Sintered CdS on the Photovoltaic Properties of Polycrystalline CdS / CdTe Solar Cells , 1987 .

[4]  Carleton H. Seager,et al.  Passivation of grain boundaries in silicon , 1982 .

[5]  Ajeet Rohatgi,et al.  Opportunities in silicon photovoltaics and defect control in photovoltaic materials , 1993 .

[6]  H. Neumann,et al.  Structural and electrical properties of CuIn0.7Ga0.3Se2 epitaxial layers on GaAs substrates , 1980 .

[7]  A. C. Albrecht,et al.  Chlorophyll-a photovoltaic cells , 1975, Nature.

[8]  A. Fahrenbruch,et al.  Photovoltaic energy conversion with n-CdS—p-CdTe heterojunctions and other II-VI junctions , 1977, IEEE Transactions on Electron Devices.

[9]  Rommel Noufi,et al.  The role of oxygen in CuInSe2 thin films and CdS/CuInSe2 devices , 1986 .

[10]  Harold M. Manasevit,et al.  Recollections and reflections of MO-CVD , 1981 .

[11]  Lawrence L. Kazmerski,et al.  Evidence for the neutralization of boron in silicon using surface analysis techniques , 1987 .

[12]  Keith Emery,et al.  Spectral effects on PV-device rating , 1992 .

[13]  Anthony W. Catalano,et al.  Progress toward high efficiency multijunction cells and submodules at Solarex , 1988 .

[14]  Ajeet Rohatgi,et al.  The effects of CdCl2 on the electronic properties of molecular‐beam epitaxially grown CdTe/CdS heterojunction solar cells , 1991 .

[15]  E. H. Kennard,et al.  An Effect of Light upon the Contact Potential of Selenium and Cuprous Oxide , 1917 .

[16]  L. Kazmerski,et al.  Ternary-compound thin-film solar cells , 1983 .

[17]  Dimitrios Hariskos,et al.  An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer , 1996 .

[18]  Keith W. J. Barnham,et al.  A new approach to high‐efficiency multi‐band‐gap solar cells , 1990 .

[19]  John D. Meakin,et al.  High efficiency CuInSe2 based heterojunction solar cells: fabrication and results , 1986 .

[20]  Amal K. Ghosh,et al.  High‐efficiency organic solar cells , 1978 .

[21]  L. Kazmerski,et al.  Growth and properties of vacuum deposited CuInSe2 thin films , 1976 .

[22]  C. R. Osterwald,et al.  Solar cell area considerations , 1983 .

[23]  Keith Emery,et al.  High efficiency indium tin oxide/indium phosphide solar cells , 1985 .

[24]  Shirley S. Chu,et al.  Recent progress in thin‐film cadmium telluride solar cells , 1993 .

[25]  F. J. Pern Factors that affect the EVA encapsulant discoloration rate upon accelerated exposure , 1996 .

[26]  Carl R. Osterwald,et al.  A comparison of the errors in determining the conversion efficiency of multijunction solar cells by various methods , 1988 .

[27]  R. D. Nasby,et al.  Performance measurement techniques for concentrator photovoltaic cells , 1982 .

[28]  Alex Zunger,et al.  Structural Origin of Optical Bowing in Semiconductor Alloys , 1983 .

[29]  David L. King,et al.  Solar cell efficiency tables (version 8) , 1996 .

[30]  R. Bhat,et al.  Organometallic Vapor Phase Epitaxy , 1992 .

[31]  L. O. Grondahl The Copper-Cuprous-Oxide Rectifier and Photoelectric Cell , 1933 .

[32]  J. Loferski The first forty years: A brief history of the modern photovoltaic age , 1993 .

[33]  W. Spear,et al.  Electronic properties of substitutionally doped amorphous Si and Ge , 1976 .

[34]  F. Smits,et al.  History of silicon solar cells , 1976, IEEE Transactions on Electron Devices.

[35]  J. I. Hanoka,et al.  Hydrogen diffusion along passivated grain boundaries in silicon ribbon , 1984 .

[36]  Sigurd Wagner,et al.  CuInSe2/CdS heterojunction photovoltaic detectors , 1974 .

[37]  Kazufumi Yamaguchi,et al.  CdS–CdTe Solar Cell Prepared by Vapor Phase Epitaxy , 1977 .

[38]  S. Ovshinsky An Introduction to Ovonic Research , 1970 .

[39]  B. Tell,et al.  Room‐Temperature Electrical Properties of Ten I‐III‐VI2 Semiconductors , 1972 .

[40]  R. Torguet,et al.  Ultrafast echotomographic system using optical processing of ultrasonic signals , 1977 .

[41]  L. Kazmerski,et al.  Chemistry of hydrogen and arsenic interactions at silicon grain boundaries , 1986 .

[42]  J. C. Phillips,et al.  Solid solution formation in the systems CuMIIIX2-AgMIIIX2 where MIII=Al, Ga, In and X2=S, Se , 1973 .

[43]  Masud Mansuripur,et al.  Magneto‐optical recording on patterned substrates (invited) , 1996 .

[44]  Ajeet Rohatgi,et al.  Growth and process optimization of CdTe and CdZnTe polycrystalline films for high efficiency solar cells , 1991 .

[45]  F. Pern,et al.  Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review , 1996 .

[46]  H. Schock,et al.  Solar cells based on CuInSe2 and related compounds : recent progress in Europe , 1994 .

[47]  R L Hulstrom,et al.  Solar spectral measurements in the terrestrial environment. , 1982, Applied optics.

[48]  U. A. Elani,et al.  The importance of silicon photovoltaic manufacturing in Saudi Arabia , 1998 .

[49]  T. W. F. Russell,et al.  Economics of processing thin-film solar cells , 1984 .

[50]  D. C. Reynolds Photovoltaic effect in cadmium sulfide crystals , 1954 .

[51]  W. B. Nowak,et al.  Polycrystalline silicon films on aluminum sheets for solar cell application , 1974 .

[52]  Hans M. Cassel The Photovoltaic Effect , 1941 .

[53]  Lawrence L. Kazmerski,et al.  Optical properties and grain boundary effects in CuInSe2 , 1983 .

[54]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[55]  F. Leccabue,et al.  Electro‐Optical Properties of CuGa0.7In0.3Se2/ZnSe Heterojunction , 1982 .

[56]  John W. Hutchinson,et al.  Stress in thin hollow silicon cylinders grown by the edge-defined film-fed growth technique , 1990 .

[57]  Paul A. Basore,et al.  Defining terms for crystalline silicon solar cells , 1994 .

[58]  J. L. Queisser,et al.  Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications , 1976 .

[59]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[60]  Brian E. McCandless,et al.  Analysis of post deposition processing for CdTe/CdS thin film solar cells , 1991 .

[61]  Dieter Bonnet,et al.  THE CdTe THIN FILM SOLAR CELL - AN OVERVIEW , 1992 .

[62]  Ziyad M. Salameh,et al.  Optimum battery configuration for maximum utilization of photovoltaics , 1994 .

[63]  Carl R. Osterwald,et al.  High-performance concentrator tandem solar cells based on IR-sensitive bottom cells , 1991 .

[64]  Tai Tsun Wu EFFECT OF HIGHER ORDER WEAK INTERACTIONS OF THE PRODUCTION CROSS SECTION OF INTERMEDIATE BOSONS BY NEUTRINOS , 1963 .

[65]  Kentaro Ito,et al.  High efficiency indium oxide/cadmium telluride solar cells , 1987 .

[66]  André Vantomme,et al.  Formation of epitaxial CoSi2 on Si(100): Role of the annealing ambient , 1993 .

[67]  Subhendu Guha,et al.  On the lack of correlation between film properties and solar cell performance of amorphous silicon‐germanium alloys , 1993 .

[68]  K. Emery,et al.  Solar cell efficiency measurements , 1986 .

[69]  David L. Morse,et al.  Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode , 1976 .

[70]  Richard S. Crandall Fundamental studies of amorphous silicon materials at the solar energy research institute , 1988 .

[71]  Rommel Noufi,et al.  EBIC investigations of junction activity and the role of oxygen in CdS/CuInSe2 devices , 1986 .

[72]  Isaac Balberg,et al.  Deposition of device quality, low H content amorphous silicon , 1991 .

[73]  Lawrence L. Kazmerski,et al.  Quantitative studies of cleaved and sputtered CuInSe2 surfaces , 1984 .

[74]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[75]  A. Nakano,et al.  Preparation of Low Resistance Contact Electrode in Screen Printed CdS/CdTe Solar Cell , 1983 .

[76]  A. J. McEvoy,et al.  Sensitisation in photochemistry and photovoltaics , 1994 .

[77]  Sigurd Wagner,et al.  Temperature-dependent nuclear magnetic resonance inCuInX2 (X=S,Se,Te)chalcopyrite-structure compounds , 1983 .

[78]  Lawrence L. Kazmerski,et al.  Compositional microcharacterization of electrically active and chemically passivated silicon grain boundaries , 1985 .

[79]  Allen M. Barnett,et al.  Polycrystalline silicon‐film™ solar cells: Present and future , 1994 .

[80]  T. J. Coutts,et al.  Current topics in photovoltaics , 1985 .

[81]  H. V. Gelder The Netherlands , 2004, Constitutions of Europe (2 vols.).

[82]  Donald L. Chubb,et al.  Thin-Film Selective Emitter , 1993 .

[83]  Daryl R. Myers,et al.  Uncertainty estimates for global solar irradiance measurements used to evaluate PV device performance , 1989 .

[84]  T. Chu,et al.  Deposition and characterization of gallium arsenide films for solar cells applications , 1980, IEEE Transactions on Electron Devices.

[85]  Kim W. Mitchell,et al.  EBIC analysis of CuInSe2 devices , 1988 .

[86]  R. Bird,et al.  Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres , 1986 .

[87]  Luciano Tarricone,et al.  Crystal growth and properties of CuGaxIn1−xSe2 chalcopyrite compound , 1979 .

[88]  C. Ferekides,et al.  CdTe solar cells with efficiencies over 15 , 1994 .

[89]  E. F. Kingsbury,et al.  Photoelectric properties of ionically bombarded silicon , 1952 .

[90]  T. Ciszek,et al.  Techniques for the crystal growth of silicon ingots and ribbons , 1984 .

[91]  J. Loferski,et al.  Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion , 1956 .

[92]  L. Kazmerski,et al.  Chemical, compositional, and electrical properties of semiconductor grain boundaries , 1982 .

[93]  S. Ghandhi,et al.  The preparation and properties of thin polycrystalline GaAs solar cells with grain boundary edge passivation , 1980, IEEE Transactions on Electron Devices.

[94]  R L Hulstrom,et al.  A combined irradiance-transmittance solar spectrum and its application to photovoltaic efficiency calculations. , 1979, Science.

[95]  E. S. Sabisky,et al.  Status of research on the light-induced effect in a-Si materials and a-Si solar cells , 1986 .

[96]  D. A. Cusano CdTe solar cells and photovoltaic heterojunctions in II–VI compounds , 1963 .

[97]  E. Adler,et al.  The Photovoltaic Effect , 1941 .

[98]  Richard H. Bube,et al.  Fundamentals of solar cells , 1983 .

[99]  Martin A. Green Silicon solar cells: The ultimate photovoltaic solution? , 1994 .

[100]  C. R. Hills,et al.  Near‐surface microstructural modifications in low energy hydrogen ion bombarded silicon , 1985 .

[101]  Richard H. Bube,et al.  CdTe junction phenomena , 1988 .

[102]  B. R. Hansen,et al.  Photovoltaic concentrator cell measurement methods , 1986 .

[103]  Velko P. Tzolov,et al.  Theoretical analysis of birefringence and form‐induced polarization mode dispersion in birefringent optical fibers: A full‐vectorial approach , 1995 .

[104]  C. E. Fritts On a new form of selenium cell, and some electrical discoveries made by its use , 1883, American Journal of Science.

[105]  D. Carlson,et al.  AMORPHOUS SILICON SOLAR CELL , 1976 .

[106]  Harold M. Manasevit,et al.  Single-crystal gallium arsenide on insulating substrates , 1968 .

[107]  H. Brandhorst,et al.  Interim solar cell testing procedures for terrestrial applications , 1975 .

[108]  A. Ignatiev,et al.  The phase diagrams of K and Cs on the Cu(110) surface , 1989 .

[109]  Alex Zunger,et al.  Electronic structure of the ternary chalcopyrite semiconductors CuAls2, CuGaS2, CuInS2, CuAlse2, CuGaSe2, and CuInSe2 , 1983 .

[110]  A. Rothwarf,et al.  Time-dependent open-circuit voltage in CuInSe2/CdS solar cells: theory and experiment , 1987 .

[111]  A. Rothwarf,et al.  CuInSe2/Cd(Zn)S solar cell modeling and analysis , 1986 .

[112]  H. Neumann,et al.  Optical properties of Culn1−xGaxSe2 mixed crystals , 1979 .

[113]  Volker Lehmann,et al.  Porous silicon formation: A quantum wire effect , 1991 .

[114]  K W Mitchell,et al.  Status of New Thin-Film Photovoltaic Technologies , 1982 .

[115]  R. Chittick,et al.  The Preparation and Properties of Amorphous Silicon , 1969 .

[116]  R. Mickelsen,et al.  High photocurrent polycrystalline thin‐film CdS/CuInSe2 solar cella , 1980 .

[117]  C. Wang,et al.  14.6% efficient thin-film cadmium telluride heterojunction solar cells , 1992, IEEE Electron Device Letters.

[118]  Thomas C. Anthony,et al.  Low resistance contacts to p-type cadmium telluride , 1982 .

[119]  D. Berman,et al.  EVA laminate browning after 5 years in a grid-connected, mirror-assisted, photovoltaic system in the Negev desert: effect on module efficiency , 1995 .

[120]  C. Osterwald TRANSLATION OF DEVICE PERFORMANCE MEASUREMENTS TO REFERENCE CONDITIONS , 1986 .

[121]  J. J. Lin,et al.  TPV cell IV curve testing with varying black body emission temperatures, intensities, and cell temperatures , 1996 .

[122]  C. Tang,et al.  Transient photovoltaic effects in metal-chlorophyll-a-metal sandwich cells , 1975 .

[123]  Anders Hagfeldt,et al.  Verification of High Efficiencies for the Grätzel Cell : A 7% Efficient Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. , 1994 .

[124]  Arthur J. Nozik,et al.  Electrode materials for photoelectrochemical devices , 1977 .

[125]  R. G. Seidensticker,et al.  Dendritic web silicon for solar cell application , 1977 .

[126]  P. Rappaport,et al.  The Electron-Voltaic Effect in p − n Junctions Induced by Beta-Particle Bombardment , 1954 .

[127]  Lawrence E Murr,et al.  Solar materials science , 1980 .

[128]  Claude M. Penchina,et al.  The physics of amorphous solids , 1983 .

[129]  Sigurd Wagner,et al.  Surface order and stoichiometry of sputter‐cleaned and annealed CuInSe2 , 1985 .

[130]  Bruce A. Parkinson,et al.  Enhanced photoelectrochemical solar‐energy conversion by gallium arsenide surface modification , 1978 .

[131]  Keith Emery Solar simulators and I-V measurement methods , 1986 .

[132]  Sarah R. Kurtz,et al.  29.5%‐efficient GaInP/GaAs tandem solar cells , 1994 .

[133]  M. Prince Silicon Solar Energy Converters , 1955 .

[134]  S. Martinuzzi,et al.  Compensation of p‐type cast polycrystalline silicon by hydrogen ion implantation at 300 °C , 1985 .

[135]  K. L. Chopra,et al.  Growth Kinetics and Polymorphism of Chemically Deposited CdS Films , 1980 .

[136]  Alex Zunger,et al.  Theory of the band-gap anomaly in AB C 2 chalcopyrite semiconductors , 1984 .

[137]  Amal K. Ghosh,et al.  Theoretical efficiency of SnO2/Si solar cells , 1979 .

[138]  W. Spear,et al.  Investigation of the localised state distribution in amorphous Si films , 1972 .

[139]  D. Schmid,et al.  Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2 , 1993 .

[140]  P. J. Reucroft,et al.  Theoretical efficiency in an organic photovoltaic energy conversion system , 1974 .

[141]  Sarah R. Kurtz,et al.  Modeling of two‐junction, series‐connected tandem solar cells using top‐cell thickness as an adjustable parameter , 1990 .

[142]  Keith Emery,et al.  High-efficiency solar cells fabricated from direct-current magnetron sputtered n-indium tin oxide onto p-InP grown by atmospheric pressure metalorganic vapor phase epitaxy , 1989 .

[143]  R. M. Swanson,et al.  Point-contact solar cells: Modeling and experiment , 1986 .

[144]  R. K. Ahrenkiel,et al.  The effect of deep states on the photovoltaic performance of CdZnS/CuInSe2 thin film devices , 1986 .

[145]  Hideyuki Takakura,et al.  Spectroscopic Laser Scanning Analysis of Photo-Induced Current on a-Si Solar Cells , 1983 .

[146]  Karl W. Böer,et al.  Advances in Solar Energy , 1985 .

[147]  W. Spear,et al.  Substitutional doping of amorphous silicon , 1993 .

[148]  Akio Yamamoto,et al.  High conversion efficiency and high radiation resistance InP homojunction solar cells , 1984 .

[149]  Kazufumi Yamaguchi,et al.  Photovoltaic Effect in CdTe-CdS Junctions Prepared by Vapor Phase Epitaxy , 1976 .

[150]  A. J. Heeger,et al.  The mechanism of Schottky‐barrier formation in polyacetylene , 1981 .

[151]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[152]  Foster C. Nix,et al.  A Thallous Sulphide Photo-e.m.f. Cell , 1939 .

[153]  Ludwig Bergmann,et al.  Lichtelektrische Untersuchungen an Halbleitern , 1936 .

[154]  K. Zellama,et al.  Junction capacitance studies of deep defects in undoped hydrogenated amorphous silicon , 1988 .

[155]  Ming Chong,et al.  35% efficient nonconcentrating novel silicon solar cell , 1992 .

[156]  Karl W. Böer,et al.  Polycrystalline semiconductor heterojunction modeling (CdS/CuInSe2) , 1986 .

[157]  Sarah R. Kurtz,et al.  A 27.3 % efficient Ga0.5 In0.5 P/GaAs tandem solar cell , 1990 .