Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light

Abstract The development of nonlinear optical (NLO) borate crystals for generation of visible and UV light is reviewed. We first discussed on the basic principles of laser frequency conversion. Then, we examine the trends in research on NLO crystals. The background and present status of NLO borate crystals are summarized. The main considerations are focused on the discussion of crystals like CsLiB 6 O 10 (CLBO), Gd x Y 1− x Ca 4 O(BO 3 ) 3 (GdYCOB) and K 2 Al 2 B 2 O 7 (KAB). Properties of related materials like β-BaB 2 O 2 (BBO), LiB 3 O 5 (LBO), KBe 2 BO 3 F 2 (KBBF), Sr 2 Be 2 BO 7 (SBBO), CsB 3 O 5 (CBO), GdCa 4 O(BO 3 ) 3 (GdCOB) and YCa 4 O(BO 3 ) 3 (YCOB) are included for comparison. We aim to provide a complete view of developing a new NLO borate material for actual laser applications. This review covers various aspects including the search for new materials, the growth of bulk crystals, the characterization of crystal properties as well as the development of new techniques to overcome obstacles in actual laser application, namely, thermal dephasing and laser-induced damage. Finally, perspectives on NLO borate crystals and all-solid-state UV lasers are evaluated.

[1]  Masashi Yoshimura,et al.  Bulk laser damage in CsLiB6O10 crystal , 1998, Laser Damage.

[2]  R. Wallenstein,et al.  Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P , 1991 .

[3]  X. Meng,et al.  Slope efficiency of up to 73% for Yb:Ca4YO(BO3)3 crystal laser pumped by a laser diode , 1999 .

[4]  V. Trunov,et al.  The crystal structure of calcium samarium oxide borate Ca8Sm2O2(BO3)6 , 1991 .

[5]  M. Adams,et al.  Optical waves in crystals , 1984, IEEE Journal of Quantum Electronics.

[6]  Fumiyuki Marumo,et al.  β-barium borate single crystal grown by a direct Czochralski method , 1990 .

[7]  Martin M. Fejer,et al.  Study of KTiOPO4 gray‐tracking at 1064, 532, and 355 nm , 1994 .

[8]  G. Loiacono,et al.  Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks , 1992 .

[9]  Hans P. Jenssen,et al.  Advanced solid-state lasers , 1991 .

[10]  G. Stucky,et al.  Electronic effects of substitution chemistry in the potassium titanyl phosphate (KTiOPO4) structure field: structure and optical properties of potassium vanadyl phosphate , 1990 .

[11]  D. Milam,et al.  Laser-induced surface and coating damage , 1981 .

[12]  H. Daido,et al.  Fourth‐harmonic generation of picosecond glass laser pulses with cesium lithium borate crystals , 1996 .

[13]  W. Cheng,et al.  Cluster modeling of electronic structure and nonlinear properties for the optical materials MB 6 O 10 (M=Cs 2 ,Li 2 ,CsLi) , 1999 .

[14]  T Sasaki,et al.  Alleviation of thermally induced phase mismatch in CsLiB6O10 crystal by means of temperature-profile compensation. , 1998, Optics letters.

[15]  Y. Mori,et al.  A New Nonlinear Optical Borate Crystal K2Al2B2O7 (KAB) , 1998 .

[16]  X. Huang,et al.  Crystal structure of KBe2BO3F2 , 1995 .

[17]  W. Bosenberg,et al.  Phase-matched second-harmonic generation and growth of a LiB 3 O 5 crystal , 1992 .

[18]  Younan Xia,et al.  New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach , 1995 .

[19]  François Salin,et al.  Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca 4 GdO(BO 3 ) 3 , 1997 .

[20]  Kunio Yoshida,et al.  Extremely high damage threshold of a new nonlinear crystal L-arginine phosphate and its deuterium compound , 1989 .

[21]  C. Peters,et al.  Generation of optical harmonics , 1961 .

[22]  P. Magnante,et al.  Efficient Second‐Harmonic Generation with Diffraction‐Limited and High‐Spectral‐Radiance Nd‐Glass Lasers , 1969 .

[23]  N. L. Boling,et al.  Importance of Fresnel reflections in laser surface damage of transparent dielectrics , 1972 .

[24]  Sadao Nakai,et al.  CsB3O5: A new nonlinear optical crystal , 1993 .

[25]  David Milam,et al.  The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals , 1982 .

[26]  E. Kaldis,et al.  Crystal growth from high-temperature solutions , 1976 .

[27]  Y. Uematsu Nonlinear Optical Properties of KNbO3 Single Crystal in the Orthorhombic Phase , 1974 .

[28]  J. H. Bechtel,et al.  Picosecond laser-induced breakdown at 5321 and 5347 A - Observation of frequency-dependent behavior , 1977 .

[29]  D. Olness Laser‐Induced Breakdown in Transparent Dielectrics , 1968 .

[30]  Herman Vanherzeele,et al.  Optimization of a cw mode-locked frequency-doubled Nd:LiYF(4) laser. , 1988, Applied optics.

[31]  Takatomo Sasaki,et al.  Improvement of laser-induced surface damage in UV optics by ion beam etching (CsLiB6O10 and fused silica) , 1999, Laser Damage.

[32]  David Milam,et al.  Improving the bulk laser damage resistance of potassium dihydrogen phosphate crystals by pulsed laser irradiation , 1982 .

[33]  Nobuhiro Umemura,et al.  Ultraviolet generation tunable to 0.185 µm in CsLiB 6 O 10 , 1997 .

[34]  Hisanori Fujita,et al.  Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals , 1994 .

[35]  T Sasaki,et al.  High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB(6)O(10). , 1996, Optics letters.

[36]  A. Drummond,et al.  Nimbus-6 earth radiation budget experiment. , 1977, Applied optics.

[37]  M. Nygren,et al.  Structural investigations of new calcium-rare earth (R) oxyborates with the composition Ca4Ro(BO3)3 , 1992 .

[38]  Y. Mori,et al.  Effect of RF Plasma Etching on Surface Damage in CsLiB6O10 Crystal , 1999 .

[39]  C. R. Giuliano Laser‐induced damage in transparent dielectrics: ion beam polishing as a means of increasing surface damage thresholds , 1972 .

[40]  Yoke Khin Yap,et al.  CsLiB6O10 crystal for frequency doubling the Nd:YAG laser , 1998 .

[41]  Ning Ye,et al.  The vacuum ultraviolet phase‐matching characteristics of nonlinear optical KBe2BO3F2 crystal , 1996 .

[42]  Y. Mori,et al.  Crystal growth of cesium triborate, CsB3O5 by Kyropoulos technique , 1999 .

[43]  Takatomo Sasaki,et al.  Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 °C , 1998 .

[44]  J. Krogh-Moe Refinement of the crystal structure of caesium triborate, Cs2O.3B2O3 , 1974 .

[45]  T Sasaki,et al.  20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser. , 2000, Optics letters.

[46]  G. D. Boyd,et al.  LiNbO3: AN EFFICIENT PHASE MATCHABLE NONLINEAR OPTICAL MATERIAL , 1964 .

[47]  Yusuke Mori,et al.  Ion Etching of Fused Silica Glasses for High-Power Lasers , 1998 .

[48]  T. E. Gier,et al.  KxRb1−xTiOPO4: A new nonlinear optical material , 1976 .

[49]  R. Hodgson,et al.  Frequency doubling in KB5O84H2O and NH4B5O84H2O to 217.3 nm , 1975 .

[50]  Mark S. Webb Temperature sensitivity of KDP for phase-matched frequency conversion of 1 /spl mu/m laser light , 1994 .

[51]  Bai-chang Wu,et al.  Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal , 1996 .

[52]  Y. Wu,et al.  Characterization of CsB(3)O(5) crystal for ultraviolet generation. , 1997, Optics letters.

[53]  J. A. Ringlien,et al.  An acid treatment for raising the surface damage thereshold of laser glass , 1974 .

[54]  Yusaburo Segawa,et al.  Growth and ultraviolet application of Li2B4O7 crystals: Generation of the fourth and fifth harmonics of Nd:Y3Al5O12 lasers , 1997 .

[55]  D. Lovell Patent Reviews: 3,767,285; 3,770,966; 3,792,924; 3,834,808; 3,888,568; 3,920,326; 3,920,330; 3,920,331; 3,922,061; 3,924,924; 3,927,934; 3,928,764; 3,935,382; 3,936,153; 3,938,882; 3,938,884; 3,941,457; 3,944,321; 3,944,322; 3,947,085 , 1977 .

[56]  S. Haussühl,et al.  LARGE NONLINEAR OPTICAL COEFFICIENT AND PHASE MATCHED SECOND HARMONIC GENERATION IN LiIO3 , 1969 .

[57]  T. H. Allik,et al.  Tunable ultraviolet laser source based on solid-state dye laser technology and CsLiB(6)O(10) harmonic generation. , 1997, Optics letters.

[58]  F. Marumo,et al.  β-BaB2O4 single crystal growth by Czochralski method. II , 1991 .

[59]  W. R. Bosenberg,et al.  Laser-induced damage in beta-barium metaborate , 1988 .

[60]  N. Bloembergen Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics. , 1973, Applied optics.

[61]  Yuzo Mori,et al.  Nonlinear optical crystal for near-ultraviolet generation: gadolinium yttrium calcium oxyborate GdxY1-xCa4O(BO3)3 , 1999, Other Conferences.

[62]  Yuzo Mori,et al.  Design of a new technique for alleviating thermal dephasing of nonlinear optical crystal , 1999, Other Conferences.

[63]  W. White,et al.  Structural characteristics of alkali borate flux liquids , 1969 .

[64]  Chihiro Yamanaka,et al.  Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by reducing the organic impurities in growth solution , 1988 .

[65]  Hanna J. Hoffman,et al.  Efficient second-harmonic generation in KTP crystals , 1986 .

[66]  Fred P. Milanovich,et al.  High‐laser‐damage‐threshold potassium dihydrogen phosphate crystals , 1990 .

[67]  Jacek K. Tyminski Photorefractive damage in KTP used as second-harmonic generator , 1991 .

[68]  D. A. Roberts,et al.  Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions , 1992 .

[69]  Petra Becker,et al.  Borate Materials in Nonlinear Optics , 1998 .

[70]  Donald R Uhlmann,et al.  Mechanism of Inclusion Damage in Laser Glass , 1970 .

[71]  Jiang Aidong,et al.  Flux growth of large single crystals of low temperature phase barium metaborate , 1986 .

[72]  David Eimerl,et al.  Optical, mechanical, and thermal properties of barium borate , 1987 .

[73]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[74]  F. Salin,et al.  A New Non-Linear and Neodymium Laser Self-Frequency Doubling Crystal with Congruent Melting: Ca4GdO(BO3)3 (GdCOB). , 2010 .

[75]  H. Yoshida,et al.  Bulk Laser Damage in CsLiB6O10 Crystal and Its Dependence on Crystal Structure , 1999 .

[76]  K. Kato,et al.  Tunable UV generation to 0.185 /spl mu/m in CsB/sub 3/O/sub 5/ , 1995 .

[77]  M. Yoshimura,et al.  Crystal growth and characterization of GdxY1-xCa4O(BO3)3 crystal , 1999 .

[78]  Y. Shen,et al.  Nonlinear infrared generation , 1977 .

[79]  K. Kato,et al.  Temperature-tuned 90/spl deg/ phase-matching properties of LiB/sub 3/O/sub 5/ , 1994 .

[80]  N. Bloembergen,et al.  Laser-induced electric breakdown in solids , 1974 .

[81]  Takatomo Sasaki,et al.  Synthesis of adhesive c-BN films in pure nitrogen radio-frequency plasma , 1999 .

[82]  Sadao Nakai,et al.  Nonlinear Optical Properties of Cesium Lithium Borate , 1995 .

[83]  T Sasaki,et al.  Noncritically phase-matched frequency conversion in Gd(x)Y(1-x)Ca(4)O(BO(3))(3) crystal. , 1999, Optics letters.

[84]  Zhaoyang Sun,et al.  The nonlinear optical characteristics of a LiB3O5 crystal , 1990 .

[85]  A. Ballman A new series of synthetic borates isostructural with the carbonate mineral huntite , 1962 .

[86]  Laura E. Davis,et al.  Phase-matched harmonic generation in lithium triborate (LBO) , 1991 .

[87]  D. Eimerl,et al.  Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs , 1987 .

[88]  Roy D. Mead,et al.  Solid state lasers for 193-nm photolithography , 1997, Advanced Lithography.

[89]  Yusaburo Segawa,et al.  Growth and Optical Characterization of Cr 3+:YAB and Cr 3+:YGAB Crystal for New Tunable and Self-Frequency Doubling Laser , 1995 .

[90]  Chuangtian Chen Development of New Nonlinear Optical Crystals in the Borate Series , 1991 .

[91]  Benoît Boulanger,et al.  Optical studies of laser-induced gray-tracking in KTP , 1999 .

[92]  H. Bruesselbach,et al.  Beam shaping to suppress phase-mismatch in high power second harmonic generation (SHG) , 1979, IEEE Journal of Quantum Electronics.

[93]  R. Lathe,et al.  Oral vaccination of the fox against rabies using a live recombinant vaccinia virus , 1986, Nature.

[94]  M. Yoshimura,et al.  K2AI2B2O7: a new nonlinear optical crystal , 1998, Other Conferences.

[95]  Martin M. Fejer,et al.  Laser‐induced photochromic damage in potassium titanyl phosphate , 1994 .

[96]  D. Eimerl,et al.  High average power harmonic generation , 1987 .

[97]  Chuangtian Chen,et al.  Nonlinear optical materials based on MBe2BO3F2 (M=Na,K) , 1993 .

[98]  G. Boyd,et al.  Optical Nonlinearities in LiIO3 , 1969 .

[99]  E. Teppo,et al.  Bulk-darkening threshold of flux-grown KTiOPO(4). , 1991, Optics letters.

[100]  T Sasaki,et al.  Long-term operation of CsLiB(6)O(10) at elevated crystal temperature. , 1998, Optics letters.

[101]  Sadao Nakai,et al.  New nonlinear optical crystal: Cesium lithium borate , 1995 .

[102]  Yicheng Wu,et al.  New nonlinear-optical crystal: LiB 3 O 5 , 1989 .

[103]  M. Koike,et al.  Thermal Expansions of Pure and Al-doped CsLiB6O10 Crystals for Nonlinear Optical Applications , 1997 .

[104]  K. Midorikawa,et al.  Second-Harmonic Generation from Intense, 100-fs Ti:Sapphire Laser Pulses in Potassium Dihydrogen Phosphate, Cesium Lithium Borate and β-Barium Metaborate , 1998 .

[105]  Hiroyuki Furuya,et al.  Crystal Growth and Optical Characterization of Rare-Earth (Re) Calcium Oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as New Nonlinear Optical Material , 1997 .

[106]  T. Sasaki,et al.  High-efficiency intracavity continuous-wave ultraviolet generation using crystals CsLiB6O10, β-BaB2O4 and LiB3O5 , 1996 .

[107]  M. Withford,et al.  4.7-W, 255-nm source based on second-harmonic generation of a copper-vapor laser in cesium lithium borate. , 1998, Optics letters.

[108]  A mechanism for damage in solids by intense light , 1967 .

[109]  Masashi Yoshimura,et al.  Improvement of laser-induced surface damage in CsLiB6O10 crystal by ion etching , 1998, Laser Damage.

[110]  S. Nakai,et al.  Caesium Lithium Borate: a New Nonlinear Optical Crystal , 1995 .

[111]  Sadao Nakai,et al.  Growth of a nonlinear optical crystal : cesium lithium borate , 1995 .

[112]  W. R. Bosenberg,et al.  Growth and characterization of low temperature phase barium metaborate crystals , 1988 .

[113]  A. Ilyukhin,et al.  Crystal structures of binary oxoborates LnCa4O(BO3)3 (LN = Gd, Tb, and Lu) and Eu2CaO(VO3)2 , 1993 .