Due to the instability of mine sources and the uncertainty of the composition of returned lye and waste liquid, there exists a significant fluctuation of raw slurry quality in the blending process of starting materials for sintering. The expected slurry was obtained through the mixing of starting materials in full-filled tanks. In this article, an optimal scheduling model of full-filled tanks is developed based on material balance principle and expert experiences subject to technological requirements. To solve such optimization problem, an improved genetic algorithm (IGA) is proposed, in which the intervention strategy is introduced into the random process of population initialization to obtain the well-proportioned initial population and the probabilities of crossover and mutation are changed according to the difference between the fitness value of the best solution and the average fitness value of the better solutions as well as the difference between the fitness value of the best solution and the average fitness value of the current population to prevent premature convergence. The IGA-based optimization system was applied to the processing of raw slurry for alumina production and the actual running results show that the composition fluctuation in mixed raw slurry decreased significantly, effectively improving the eligibility rate of the mixed raw slurry and contributing to the stabilization of the subsequent process of alumina production.
Du fait de l'instabilite des sources minieres et de l'incertitude sur la composition des lessives et du liquide use retournes, il existe une fluctuation importante dans la qualite des suspensions brutes dans le procede de melange des materiaux de base pour le frittage. La suspension souhaitee a ete obtenue par le melange des materiaux de base dans des reservoirs remplis a pleine capacite. Dans cet article, un modele d'ordonnancement optimal de reservoirs remplis a pleine capacite est mis au point en utilisant un bilan de matiere et des experiences particulieres en relation avec des besoins technologiques. Pour resoudre ce probleme d'optimisation, on propose un algorithme genetique ameliore (IGA), dans lequel la strategie d'intervention est introduite dans le procede aleatoire d'initialisation de population afin d'obtenir une population initiale bien proportionnee, et les probabilites de transfert et de mutation sont modifiees selon la difference entre le degre de compatibilite de la meilleure solution et le degre de compatibilite moyen des meilleures solutions ainsi que selon la difference entre le degre de compatibilite de la meilleure solution et le degre de compatibilite moyen de la population courante afin de prevenir une convergence prematuree. Le systeme d'optimisation base sur l'IGA a ete applique au traitement de suspensions brutes pour la production d'alumine et les resultats d'essai reel montrent que la fluctuation de composition de la suspension brute mixte diminue de facon significative, ameliorant ainsi reellement le taux d'admissibilite de la suspension brute mixte et contribuant a la stabilisation du procede de production d'alumine subsequent
[1]
Kalyanmoy Deb,et al.
Self-Adaptive Genetic Algorithms with Simulated Binary Crossover
,
2001,
Evolutionary Computation.
[2]
Imed Kacem,et al.
Genetic algorithm for the flexible job-shop scheduling problem
,
2003,
SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).
[3]
Gui Wei-hua.
Blending expert system for raw mix slurry in production of alumina with sintering process
,
2005
.
[4]
Mitsuo Gen,et al.
A tutorial survey of job-shop scheduling problems using genetic algorithms—I: representation
,
1996
.
[5]
Naveed Ramzan,et al.
Multi-objective optimization in distillation unit : A case study
,
2008
.
[6]
Lalit M. Patnaik,et al.
Adaptive probabilities of crossover and mutation in genetic algorithms
,
1994,
IEEE Trans. Syst. Man Cybern..
[7]
Weihua Gui,et al.
An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity
,
2002,
IEEE Trans. Neural Networks.
[8]
Weihua Gui,et al.
Multi-step optimal control of complex process: a genetic programming strategy and its application
,
2004,
Eng. Appl. Artif. Intell..
[9]
Lawrence Davis,et al.
Adapting Operator Probabilities in Genetic Algorithms
,
1989,
ICGA.
[10]
Antonio Fernandes Dias,et al.
Multiobjective genetic algorithms applied to solve optimization problems
,
2002
.