Optimal Control of an SIR Epidemic Model with a Saturated Treatment

In this paper, we formulate an optimal control problem for an SIR epidemic model with saturated incidence and saturated treatment. Two main efforts, namely treatment and vaccination are considered ...

[1]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[2]  Wolfgang Hackbusch,et al.  A numerical method for solving parabolic equations with opposite orientations , 1978, Computing.

[3]  O. Diekmann Mathematical Epidemiology of Infectious Diseases , 1996 .

[4]  Xianning Liu,et al.  Backward bifurcation of an epidemic model with saturated treatment function , 2008 .

[5]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[6]  Gul Zaman,et al.  Optimal control of a vector borne disease with horizontal transmission , 2012 .

[7]  T. K. Kar,et al.  Stability analysis and optimal control of an SIR epidemic model with vaccination , 2011, Biosyst..

[8]  S. I. Rubinow,et al.  Introduction to Mathematical Biology , 1975 .

[9]  Xuebin Chi,et al.  The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission , 2002 .

[10]  L. Rinaldi,et al.  Changing climate and changing vector-borne disease distribution: the example of Dirofilaria in Europe. , 2011, Veterinary parasitology.

[11]  Khalid Hattaf,et al.  Presentation of Malaria Epidemics Using Multiple Optimal Controls , 2012, J. Appl. Math..

[12]  Abdelilah Kaddar,et al.  Stability analysis in a delayed SIR epidemic model with a saturated incidence rate , 2010 .

[13]  T. Yusuf,et al.  Optimal control of vaccination and treatment for an SIR epidemiological model , 2012 .

[14]  E. Labriji,et al.  Stability Analysis and Optimal Vaccination Strategies for an SIR Epidemic Model with a Nonlinear Incidence Rate , 2013 .

[15]  K. Hattaf,et al.  A delayed SIR epidemic model with a general incidence rate , 2013 .

[16]  Yong Han Kang,et al.  Optimal treatment of an SIR epidemic model with time delay , 2009, Biosyst..

[17]  Mostafa Rachik,et al.  Optimal Vaccination Strategies of an SIR Epidemic Model with a Saturated Treatment , 2013 .

[18]  Kazeem O. Okosun,et al.  Impact of Chemo-therapy on Optimal Control of Malaria Disease with Infected Immigrants , 2011, Biosyst..

[19]  Mini Ghosh,et al.  Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination , 2010 .

[20]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[21]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[22]  Shigui Ruan,et al.  Dynamical behavior of an epidemic model with a nonlinear incidence rate , 2003 .

[23]  Seyed M. Moghadas,et al.  A qualitative study of a vaccination model with non-linear incidence , 2003, Appl. Math. Comput..

[24]  Yong Han Kang,et al.  Stability analysis and optimal vaccination of an SIR epidemic model , 2008, Biosyst..

[25]  Mini Ghosh,et al.  Stability analysis of an HIV/AIDS epidemic model with treatment , 2009 .

[26]  Shingo Iwami,et al.  Optimal control strategy for prevention of avian influenza pandemic. , 2009, Journal of theoretical biology.

[27]  Kazeem O. Okosun,et al.  Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity , 2011, Biosyst..

[28]  R. Mickens A discrete-time model for the spread of periodic diseases without immunity. , 1992, Bio Systems.

[29]  Khalid Hattaf,et al.  Optimal Control of Tuberculosis with Exogenous Reinfection , 2009 .

[30]  Yakui Xue,et al.  BIFURCATION ANALYSIS OF A STAGE-STRUCTURED EPIDEMIC MODEL WITH A NONLINEAR INCIDENCE , 2011 .

[31]  J. Janssen,et al.  Deterministic and Stochastic Optimal Control , 2013 .

[32]  Suzanne Lenhart,et al.  Backward Bifurcation and Optimal Control in Transmission Dynamics of West Nile Virus , 2010, Bulletin of mathematical biology.

[33]  Linda J. S. Allen,et al.  An introduction to mathematical biology , 2006 .