AutoGraph: Imperative-style Coding with Graph-based Performance
暂无分享,去创建一个
D. Sculley | Fei Wang | Tiark Rompf | Dan Moldovan | James M. Decker | Alexander B. Wiltschko | Zachary Nado | Brian K. Lee | Andrew A. Johnson | D. Sculley | Fei Wang | D. Moldovan | Tiark Rompf | Zachary Nado | James M. Decker | A. A. Johnson
[1] Martin Odersky,et al. Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs , 2010, GPCE '10.
[2] Alan Edelman,et al. Julia: A Fast Dynamic Language for Technical Computing , 2012, ArXiv.
[3] S. Krishnamurthi,et al. Python: the full monty , 2013, OOPSLA.
[4] Christopher Potts,et al. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.
[5] Jan Vitek,et al. Terra: a multi-stage language for high-performance computing , 2013, PLDI.
[6] Armando Solar-Lezama,et al. Precise, dynamic information flow for database-backed applications , 2015, PLDI.
[7] Christopher D. Manning,et al. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks , 2015, ACL.
[8] Zheng Zhang,et al. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems , 2015, ArXiv.
[9] Kenta Oono,et al. Chainer : a Next-Generation Open Source Framework for Deep Learning , 2015 .
[10] Siu Kwan Lam,et al. Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.
[11] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.
[12] John Salvatier,et al. Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.
[13] Kevin Duh,et al. DyNet: The Dynamic Neural Network Toolkit , 2017, ArXiv.
[14] Dan Moldovan,et al. Tangent: Automatic Differentiation Using Source Code Transformation in Python , 2017, ArXiv.
[15] Luca Antiga,et al. Automatic differentiation in PyTorch , 2017 .
[16] Sergey Levine,et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.
[17] Tiark Rompf,et al. The 800 Pound Python in the Machine Learning Room , 2018 .
[18] Fei Wang,et al. A Language and Compiler View on Differentiable Programming , 2018, ICLR.
[19] Bart van Merrienboer,et al. Automatic differentiation in ML: Where we are and where we should be going , 2018, NeurIPS.
[20] Fei Wang,et al. Demystifying differentiable programming: shift/reset the penultimate backpropagator , 2018, Proc. ACM Program. Lang..