Drift estimation for jump diusions: time-continuous and high-frequency observations
暂无分享,去创建一个
[1] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[2] Peter C. Kiessler,et al. Statistical Inference for Ergodic Diffusion Processes , 2006 .
[3] Jan Kallsen,et al. A Didactic Note on Affine Stochastic Volatility Models , 2006 .
[4] A. Dasgupta. Asymptotic Theory of Statistics and Probability , 2008 .
[5] Y. Kutoyants. Statistical Inference for Ergodic Diffusion Processes , 2004 .
[6] Hiroki Masuda,et al. Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes , 2010 .
[7] M. Sørensen,et al. Exponential Families of Stochastic Processes , 1997 .
[8] A. Shiryaev,et al. Probability (2nd ed.) , 1995, Technometrics.
[9] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[10] D. Duffie,et al. Affine Processes and Application in Finance , 2002 .
[11] R. Dudley,et al. Product integrals, young integrals and p-variation , 1999 .
[12] R. Cont,et al. Non-parametric calibration of jump–diffusion option pricing models , 2004 .
[13] H. Kunita. Itô's stochastic calculus: Its surprising power for applications , 2010 .
[14] Cecilia Mancini. Non-parametric Threshold Estimationfor Models with Stochastic DiffusionCoefficient and Jumps , 2006 .
[15] Ken-iti Sato,et al. Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type , 1984 .
[16] Uwe K uchler. A Note on Limit Theorems for Multivariate Martingales , 1996 .
[17] Julia Johanna Kappus. Nonparametric adaptive estimation for discretely observed Lévy processes , 2012 .
[18] 佐藤 健一. Lévy processes and infinitely divisible distributions , 2013 .
[19] R. Liptser. A strong law of large numbers for local martingales , 1980 .
[20] Yuri Kabanov,et al. From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift , 2006 .
[21] A. Wald. Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .
[22] M. Aschwanden. Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.
[23] A. Gushchin,et al. Asymptotic inference for a linear stochastic differential equation with time delay , 1999 .
[24] N. Shephard,et al. Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .
[25] The speed of convergence of the Threshold estimator of integrated variance , 2011 .
[26] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .
[27] Oliver Pfaffel,et al. On strong solutions for positive definite jump diffusions , 2009, 0910.1784.
[28] A. Shiryaev,et al. Statistical Experiments and Decisions: Asymptotic Theory , 2000 .
[29] T. Shiga,et al. A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type , 1990 .
[30] P. Protter. Stochastic integration and differential equations , 1990 .
[31] Achim Klenke,et al. Probability theory - a comprehensive course , 2008, Universitext.
[32] P. Doukhan. Mixing: Properties and Examples , 1994 .
[33] Jean Jacod,et al. Estimating the degree of activity of jumps in high frequency data , 2009, 0908.3095.
[34] Rama Cont,et al. Nonparametric tests for pathwise properties of semimartingales , 2011, 1104.4429.
[35] A simple estimator for discrete-time samples from affine stochastic delay differential equations , 2010 .
[36] P. Lánský,et al. Diffusion approximation of the neuronal model with synaptic reversal potentials , 1987, Biological Cybernetics.
[37] D. Blackwell. Comparison of Experiments , 1951 .
[38] William Feller,et al. On the integro-differential equations of purely discontinuous Markoff processes , 1940 .
[39] A. Kolmogoroff. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .
[40] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[41] Le Cam,et al. Locally asymptotically normal families of distributions : certain approximations to families of distributions & thier use in the theory of estimation & testing hypotheses , 1960 .
[42] Jianqing Fan,et al. Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data , 2006 .
[43] J. Jacod. Calcul stochastique et problèmes de martingales , 1979 .
[44] H. Heyer. Statistics of random processes I: General theory , 1983 .
[45] R. Wolpert. Lévy Processes , 2000 .
[46] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[47] M. F.,et al. Bibliography , 1985, Experimental Gerontology.
[48] M. Sørensen,et al. Exponential Families of Stochastic Processes: A Unifying Semimartingale Approach , 1989 .
[49] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[50] F. Bandi,et al. On the functional estimation of jump-diffusion models , 2003 .
[51] Hiroki Masuda. On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process , 2004 .
[52] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .
[53] J. Jacod,et al. Caractéristiques locales et conditions de continuité absolue pour les semi-martingales , 1976 .
[54] Universit́e Pierre. IDENTIFYING THE SUCCESSIVE BLUMENTHAL–GETOOR INDICES OF A DISCRETELY OBSERVED PROCESS , 2012 .
[55] R. Schilling. Financial Modelling with Jump Processes , 2005 .
[56] D. Applebaum. Lévy Processes and Stochastic Calculus: Preface , 2009 .
[57] D. Dawson,et al. Skew convolution semigroups and affine Markov processes , 2005, math/0505444.
[58] P. Brockwell,et al. Estimation for Nonnegative Lévy-Driven Ornstein-Uhlenbeck Processes , 2007, Journal of Applied Probability.
[59] G. Jongbloed,et al. Parametric Estimation for Subordinators and Induced OU Processes , 2006 .
[60] Yaozhong Hu,et al. Least squares estimator for Ornstein―Uhlenbeck processes driven by α-stable motions , 2009 .
[61] Paul D. Feigin,et al. Maximum likelihood estimation for continuous-time stochastic processes , 1976, Advances in Applied Probability.
[62] Markus Bibinger,et al. Efficient Covariance Estimation for Asynchronous Noisy High‐Frequency Data , 2008 .
[63] A. V. D. Vaart,et al. Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes , 2005 .
[64] P. Hall,et al. Martingale Limit Theory and Its Application , 1980 .
[65] Hiroki Masuda,et al. Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps , 2007 .
[66] Jean Jacod,et al. Volatility estimators for discretely sampled Lévy processes , 2007 .
[67] W. Feller. TWO SINGULAR DIFFUSION PROBLEMS , 1951 .
[68] Patrick Jahn,et al. Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process , 2011, Journal of Computational Neuroscience.
[69] Denis Belomestny,et al. A jump-diffusion Libor model and its robust calibration , 2010 .
[70] T. Alderweireld,et al. A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.
[71] Albert N. Shiryaev,et al. Statistical experiments and decisions , 2000 .
[72] M. Scheutzow,et al. Lyapunov exponents and stationary solutions for affine stochastic delay equations , 1990 .
[73] Markus Reiss,et al. Asymptotic equivalence for inference on the volatility from noisy observations , 2011, 1105.2128.
[74] A. Novikov. Martingales and First-Passage Times for Ornstein--Uhlenbeck Processes with a Jump Component , 2004 .
[75] Uwe Küchler,et al. On stationary solutions of delay differential equations driven by a Lévy process , 2000 .