Anisotropy of the magnetocaloric effect: Example of Mn5Ge3

We have investigated the field direction dependence of thermo-magnetic behavior in single crystalline Mn5Ge3. The adiabatic temperature change ΔTad in pulsed fields, the isothermal entropy change ΔSiso calculated from static magnetization measurements, and heat capacity have been determined for fields parallel and perpendicular to the easy magnetic direction [001]. The isothermal magnetization measurements yield, furthermore, the uniaxial anisotropy constants in second and fourth order, K1 and K2. We discuss how the anisotropy affects the magneto-caloric effect (MCE) and compare the results to the related compound MnFe4Si3, which features an enhanced MCE, too, but instead exhibits strong easy plane anisotropy. Our study reveals the importance of magnetic anisotropy and opens new approaches for optimizing the performance of magnetocaloric materials in applications.

[1]  S. Rashidi,et al.  Magnetocaloric Materials , 2021, Reference Module in Materials Science and Materials Engineering.

[2]  Z. Ou,et al.  Magnetic properties, anisotropy parameters and magnetocaloric effect of flux grown MnFe4Si3 single crystal , 2020 .

[3]  V. Pecharsky,et al.  The effect of cooling rate on magnetothermal properties of Fe49Rh51 , 2020 .

[4]  J. Wosnitza,et al.  Direct measurements of the magneto-caloric effect of MnFe4Si3 in pulsed magnetic fields , 2019, Journal of Alloys and Compounds.

[5]  C. Felser,et al.  Measurement-Protocol Dependence of the Magnetocaloric Effect in Ni - Co - Mn - Sb Heusler Alloys , 2019, Physical Review Applied.

[6]  C. Felser,et al.  Reversible adiabatic temperature change in the shape memory Heusler alloy Ni2.2Mn0.8Ga : An effect of structural compatibility , 2018, Physical Review Materials.

[7]  C. Yoon,et al.  Direct measurement of the magnetocaloric effect (ΔTad) of Mn5−x (Fe,Co)xGe3 , 2017 .

[8]  C. Viappiani,et al.  Millisecond direct measurement of the magnetocaloric effect of a Fe2P-based compound by the mirage effect , 2016 .

[9]  A. Senyshyn,et al.  Structure, Magnetism, and the Magnetocaloric Effect of MnFe4Si3 Single Crystals and Powder Samples , 2015 .

[10]  Won Bae Han,et al.  Magnetocaloric refrigerant with wide operating temperature range based on Mn5−xGe3(Co,Fe)x composite , 2015 .

[11]  J. Wosnitza,et al.  Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50Mn35In15 , 2015, 1501.04430.

[12]  T. Toliński,et al.  Specific heat and magnetocaloric effect of the Mn5Ge3 ferromagnet , 2014 .

[13]  D. H. Wang,et al.  Giant magnetocaloric and magnetoresistance effects in ferrimagnetic Mn1.9Co0.1Sb alloy , 2014 .

[14]  Shaolong Tang,et al.  Magnetocaloric effect and transition order of Mn5Ge3 ribbons , 2012 .

[15]  V. Petříček,et al.  Study of the antiferromagnetism of Mn5Si3: an inverse magnetocaloric effect material , 2012 .

[16]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[17]  S. Nie,et al.  Co doping enhanced giant magnetocaloric effect in Mn1−xCoxAs films epitaxied on GaAs (001) , 2010 .

[18]  S. Gama,et al.  Magnetocaloric effect in GdGeSi compounds measured by the acoustic detection technique: Influence of composition and sample treatment , 2010 .

[19]  N. Trung,et al.  Tunable thermal hysteresis in MnFe(P,Ge) compounds , 2009 .

[20]  V. Pecharsky,et al.  Thirty years of near room temperature magnetic cooling: Where we are today and future prospects , 2008 .

[21]  K. Buschow,et al.  Magnetic-entropy change in Mn5Ge3−xSix alloys , 2006 .

[22]  Z. Altounian,et al.  Magnetocaloric effect in Mn5Ge3−xSix pseudobinary compounds , 2006 .

[23]  S. Fujieda,et al.  Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides , 2006 .

[24]  P. Egolf,et al.  Thermodynamics of magnetic refrigeration , 2006 .

[25]  Xiangzhao Meng,et al.  Review on research of room temperature magnetic refrigeration , 2003 .

[26]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[27]  Randall H Victora,et al.  Quantitative micromagnetics simulations of exchange bias in the NiFe/NiMn system , 2002 .

[28]  Song-lin,et al.  Magnetic and magnetocaloric properties of Mn5Ge3−xSbx , 2002 .

[29]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[30]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[31]  K. Gschneidner,et al.  Thermodynamics of the magnetocaloric effect , 2001 .

[32]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[33]  Vitalij K. Pecharsky,et al.  Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .

[34]  K. Gschneidner,et al.  Magnetic refrigeration materials (invited) , 1999 .

[35]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[36]  R. Chahine,et al.  Magnetic measurements: A powerful tool in magnetic refrigerator design , 1995 .

[37]  M. Kuz’min,et al.  Magnetic refrigerants for the 4.2-20 K region: garnets or perovskites? , 1991 .

[38]  J. B. Forsyth,et al.  The spatial distribution of magnetisation density in Mn5Ge3 , 1990 .

[39]  F. Parker,et al.  Magnetic cooling near Curie temperatures above 300 K , 1984 .

[40]  G. Fischer,et al.  Magnetic investigation of the system Mn5Ge3Mn5Si3 , 1976 .

[41]  G. Fischer,et al.  On the saturation magnetization of Mn5 Ge3 , 1973 .

[42]  R. Sinclair,et al.  An investigation of the crystal structure of Mn5Ge3 using single‐crystal neutron time‐of‐flight techniques , 1970 .

[43]  Kiyoo Sato,et al.  On the Magnetic Anisotropy of Single Crystal of Mn5Ge3 , 1963 .

[44]  R. Ciszewski Magnetic Structure of the Mn5Ge3 Alloy , 1963 .

[45]  J. Thompson,et al.  The magnetic anisotropy of cobalt , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.