Hidden antibiotics in actinomycetes can be identified by inactivation of gene clusters for common antibiotics

[1]  Huimin Zhao,et al.  Activation of silent biosynthetic gene clusters using transcription factor decoys , 2018, Nature Chemical Biology.

[2]  Yihan Wu,et al.  Recent advances in activating silent biosynthetic gene clusters in bacteria. , 2018, Current opinion in microbiology.

[3]  Dimitra N. Stratis-Cullum,et al.  Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria , 2018, Nature Microbiology.

[4]  Yinhua Lu,et al.  CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces , 2018, Applied and Environmental Microbiology.

[5]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[6]  Cameron R. Currie,et al.  Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces , 2017, mBio.

[7]  Kai Blin,et al.  antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification , 2017, Nucleic Acids Res..

[8]  Winston Timp,et al.  Detecting DNA cytosine methylation using nanopore sequencing , 2017, Nature Methods.

[9]  Andrew C. Pawlowski,et al.  A Common Platform for Antibiotic Dereplication and Adjuvant Discovery. , 2017, Cell chemical biology.

[10]  J. Nodwell,et al.  An Engineered Allele of afsQ1 Facilitates the Discovery and Investigation of Cryptic Natural Products. , 2017, ACS chemical biology.

[11]  Niranjan Nagarajan,et al.  Fast and accurate de novo genome assembly from long uncorrected reads. , 2017, Genome research.

[12]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[13]  Jonathan Bisson,et al.  Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication. , 2016, Analytical chemistry.

[14]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[15]  G. V. van Wezel,et al.  Taxonomy, Physiology, and Natural Products of Actinobacteria , 2015, Microbiology and Molecular Reviews.

[16]  B. Moore,et al.  Identification of Thiotetronic Acid Antibiotic Biosynthetic Pathways by Target-directed Genome Mining. , 2015, ACS chemical biology.

[17]  G. Challis,et al.  Discovery of microbial natural products by activation of silent biosynthetic gene clusters , 2015, Nature Reviews Microbiology.

[18]  Justin Zobel,et al.  Bandage: interactive visualization of de novo genome assemblies , 2015, bioRxiv.

[19]  Gerard D. Wright Solving the Antibiotic Crisis. , 2015, ACS infectious diseases.

[20]  Huimin Zhao,et al.  High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System , 2014, ACS synthetic biology.

[21]  Roger G. Linington,et al.  Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters , 2014, Cell.

[22]  Gerard D. Wright Something old, something new: revisiting natural products in antibiotic drug discovery. , 2014, Canadian journal of microbiology.

[23]  K. Fan,et al.  JadR*‐mediated feed‐forward regulation of cofactor supply in jadomycin biosynthesis , 2013, Molecular microbiology.

[24]  Erin E. Carlson,et al.  Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. , 2013, ACS chemical biology.

[25]  K. Shin‐ya,et al.  A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. , 2012, Nature chemical biology.

[26]  Cory Ozimok,et al.  Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. , 2012, Chemistry & biology.

[27]  K. Lewis,et al.  Antibiotics: Recover the lost art of drug discovery , 2012, Nature.

[28]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[29]  Siwen Niu,et al.  Characterization of the Amicetin Biosynthesis Gene Cluster from Streptomyces vinaceusdrappus NRRL 2363 Implicates Two Alternative Strategies for Amide Bond Formation , 2012, Applied and Environmental Microbiology.

[30]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[31]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010, Bioinform..

[32]  J. Nielsen,et al.  Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. , 2010, Metabolic engineering.

[33]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[34]  Carola Engler,et al.  Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes , 2009, PloS one.

[35]  Lei Zhu,et al.  An initial strategy for comparing proteins at the domain architecture level , 2006, Bioinform..

[36]  Richard H. Baltz,et al.  Marcel Faber Roundtable: Is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? , 2006, Journal of Industrial Microbiology and Biotechnology.

[37]  J. Martín,et al.  Mutants of Streptomyces clavuligerus with Disruptions in Different Genes for Clavulanic Acid Biosynthesis Produce Large Amounts of Holomycin: Possible Cross-Regulation of Two Unrelated Secondary Metabolic Pathways , 2002, Journal of bacteriology.

[38]  Mark J. Buttner,et al.  Evidence that the Extracytoplasmic Function Sigma Factor ςE Is Required for Normal Cell Wall Structure in Streptomyces coelicolor A3(2) , 1999, Journal of bacteriology.

[39]  G. Besra,et al.  Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis , 1996, Antimicrobial agents and chemotherapy.

[40]  Yaojun Tong,et al.  CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. , 2015, ACS synthetic biology.