Soft computing-based colour quantisation

AbstractSoft computing techniques have shown much potential in a variety of computer vision and image analysis tasks. In this paper, an overview of recent soft computing approaches to the colour quantisation problem is presented. Colour quantisation is a common image processing technique to reduce the number of distinct colours in an image. Those selected colours form a colour palette, while the resulting image quality is directly determined by the choice of colours in the palette. The use of generic optimisation techniques such as simulated annealing and soft computing-based clustering algorithms founded on fuzzy and rough set ideas to formulate colour quantisation algorithms is discussed. These methods are capable of deriving good colour palettes and are shown to outperform standard colour quantisation techniques in terms of image quality. Furthermore, a hybrid colour quantisation algorithm which combines a generic optimisation approach with a common clustering algorithm is shown to lead to improved image quality. Finally, it is demonstrated how optimisation-based colour quantisation can be employed in conjunction with a more appropriate measure for image quality.

[1]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Brian A. Wandell,et al.  A spatial extension of CIELAB for digital color‐image reproduction , 1997 .

[3]  Nikolaos V. Boulgouris,et al.  Gait Representation and Recognition Based on Radon Transform , 2006, 2006 International Conference on Image Processing.

[4]  Qinghua Hu,et al.  Rough C-means and Fuzzy Rough C-means for Colour Quantisation , 2012, Fundam. Informaticae.

[5]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  B. Wandell,et al.  Pattern—color separable pathways predict sensitivity to simple colored patterns , 1996, Vision Research.

[7]  Georg Peters,et al.  Some refinements of rough k-means clustering , 2006, Pattern Recognit..

[8]  S.M. Szilagyi,et al.  MR brain image segmentation using an enhanced fuzzy C-means algorithm , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[9]  Bernhard Hill,et al.  Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula , 1997, TOGS.

[10]  Bo Thiesson,et al.  Image and Video Segmentation by Anisotropic Kernel Mean Shift , 2004, ECCV.

[11]  Aly A. Farag,et al.  A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data , 2002, IEEE Transactions on Medical Imaging.

[12]  Michael Gervautz,et al.  A simple method for color quantization: octree quantization , 1990 .

[13]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[14]  Andrew P. Bradley,et al.  Perceptual quality metrics applied to still image compression , 1998, Signal Process..

[15]  Pawan Lingras,et al.  Interval Set Clustering of Web Users with Rough K-Means , 2004, Journal of Intelligent Information Systems.

[16]  Qinghua Hu,et al.  An Improved Clustering Algorithm for Information Granulation , 2005, FSKD.

[17]  Andries Petrus Engelbrecht,et al.  A Color Image Quantization Algorithm Based on Particle Swarm Optimization , 2005, Informatica.

[18]  Paul Scheunders,et al.  A genetic c-Means clustering algorithm applied to color image quantization , 1997, Pattern Recognit..

[19]  Andrew S. Glassner,et al.  Graphics Gems , 1990 .

[20]  Lawrence O. Hall,et al.  Fast fuzzy clustering , 1998, Fuzzy Sets Syst..

[21]  Richard J. Hathaway,et al.  On efficiency of optimization in fuzzy c-Means , 2002, Neural Parallel Sci. Comput..

[22]  Paul S. Heckbert Color image quantization for frame buffer display , 1998 .

[23]  Anthony H. Dekker,et al.  Kohonen neural networks for optimal colour quantization , 1994 .

[24]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[25]  Gerald Schaefer,et al.  Quality Metric Based Colour Palette Optimisation , 2006, 2006 International Conference on Image Processing.

[26]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[27]  Lars Nolle,et al.  On the effect of step width selection schemes on the performance of stochastic local search strategies , 2004 .

[28]  Xiaolin Wu,et al.  Color quantization by dynamic programming and principal analysis , 1992, TOGS.

[29]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[30]  Gerald Schaefer,et al.  Colour map design through optimization , 2007 .

[31]  Ronald S. Gentile,et al.  Quantization of color images based on uniform color spaces , 1990 .

[32]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[33]  Gerald Schaefer,et al.  Rough colour quantisation , 2011, Int. J. Hybrid Intell. Syst..

[34]  Gerald Schaefer,et al.  Fuzzy clustering for colour reduction in images , 2009, Telecommun. Syst..