Thermal injury causes a hypermetabolic state associated with increased levels of catabolic hormones, but the molecular bases for the metabolic abnormalities are poorly understood. We investigated the lipolytic responses after beta(3)-adrenoceptor (beta(3)-AR) agonists and evaluated the associated changes in beta-AR and its downstream signaling molecules in adipocytes isolated from rats with thermal injury. Maximal lipolytic responses to a specific beta(3)-AR agonist, BRL-37344, were significantly attenuated at post burn days (PBD) 3 and 7. Despite significant reduction of the cell surface beta(3)-AR number and its mRNA at PBD 3 and 7, BRL-37344 and forskolin-stimulated cAMP levels were not decreased. Glycerol production in response to dibutyryl cAMP, a direct stimulant of hormone-sensitive lipase (HSL) via protein kinase A (PKA), was significantly attenuated. Although immunoblot analysis indicated no differences in the expression and activity of PKA or in the expression of HSL, HSL activity showed significant reductions. Finally, beta(3)-AR-induced insulin secretion was indeed attenuated in vivo. These studies indicate that the beta(3)-AR system is desensitized after burns, both in the adipocytes and in beta(3)-AR-induced secretion of insulin. Furthermore, these data suggest a complex and unique mechanism underlying the altered signaling of lipolysis at the level of HSL in animals after burns.