The Biggest Five of Reverse Mathematics
暂无分享,去创建一个
[1] D. Normann,et al. The Biggest Five of Reverse Mathematics , 2023, Journal of Mathematical Logic.
[2] D. Normann,et al. On the computational properties of basic mathematical notions , 2022, J. Log. Comput..
[3] George Voutsadakis,et al. Introduction to Set Theory , 2021, A Problem Based Journey from Elementary Number Theory to an Introduction to Matrix Theory.
[4] Sam Sanders,et al. Splittings and Robustness for the Heine-Borel Theorem , 2021, CiE.
[5] Rodney G. Downey,et al. Cousin’s lemma in second-order arithmetic , 2021, Proceedings of the American Mathematical Society, Series B.
[6] Jordan Barrett. The reverse mathematics of Cousin's lemma. , 2020, 2011.13060.
[7] Sam Sanders,et al. Countable sets versus sets that are countable in reverse mathematics , 2020, Comput..
[8] D. Normann,et al. The Axiom of Choice in computability theory and Reverse Mathematics with a cameo for the Continuum Hypothesis , 2020, J. Log. Comput..
[9] Joseph S. Miller,et al. Highness properties close to PA completeness , 2019, 1912.03016.
[10] F. Stephan,et al. Set theory , 2018, Mathematical Statistics with Applications in R.
[11] Dag Normann,et al. Pincherle's theorem in reverse mathematics and computability theory , 2018, Ann. Pure Appl. Log..
[12] Dag Normann,et al. On the mathematical and foundational significance of the uncountable , 2017, J. Math. Log..
[13] ANDRÉ NIES,et al. THE REVERSE MATHEMATICS OF THEOREMS OF JORDAN AND LEBESGUE , 2017, The Journal of Symbolic Logic.
[14] Xiaoyong Xi,et al. The Equivalence of QRB, QFS, and Compactness for Quasicontinuous Domains , 2015, Order.
[15] N. Merentes,et al. Bounded Variation and Around , 2013 .
[16] Alexander P. Kreuzer,et al. Bounded variation and the strength of Helly's selection theorem , 2013, Log. Methods Comput. Sci..
[17] L. Holá,et al. Pointwise convergence of quasicontinuous mappings and Baire spaces , 2011 .
[18] Sam Sanders,et al. The Dirac delta function in two settings of Reverse Mathematics , 2011, Archive for Mathematical Logic.
[19] Antonio Montalbán,et al. Open Questions in Reverse Mathematics , 2011, The Bulletin of Symbolic Logic.
[20] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[21] Jimmie D. Lawson,et al. Quasicontinuous functions, domains, and extended calculus , 2007 .
[22] Xizhong Zheng,et al. Effective Jordan Decomposition , 2005, Theory of Computing Systems.
[23] Takeshi Yamazaki,et al. Uniform versions of some axioms of second order arithmetic , 2004, Math. Log. Q..
[24] C. Villani. Topics in Optimal Transportation , 2003 .
[25] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[26] Ulrich Kohlenbach,et al. On uniform weak König's lemma , 2002, Ann. Pure Appl. Log..
[27] Douglas S. Bridges,et al. Bounded variation implies regulated: a constructive proof , 2001, Journal of Symbolic Logic.
[28] Stephen G. Simpson,et al. Located sets and reverse mathematics , 2000, Journal of Symbolic Logic.
[29] U. Kohlenbach. Higher Order Reverse Mathematics , 2000 .
[30] Douglas S. Bridges,et al. A Constructive Look at Functions of Bounded Variation , 2000 .
[31] U. Kohlenbach. Foundational and Mathematical Uses of Higher Types , 1999 .
[32] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[33] Helmut Pfeiffer,et al. Review: Wilfried Buchholz, Wolfram Pohlers, Wilfried Sieg, Iterated Inductive Definitions and Subsystems of Analysis , 1994 .
[34] K. Hofmann,et al. A Compendium of Continuous Lattices , 1980 .
[35] E. Lorch. Continuity and Baire Functions , 1971 .
[36] W. Worlton,et al. The Art of Computer Programming , 1968 .
[37] R. E. Zink. On semicontinuous fuctions and Baire functions , 1965 .
[38] J. Lamperti. ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .
[39] E F Collingwood,et al. CLUSTER SETS OF ARBITRARY FUNCTIONS. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[40] S. Marcus. Sur les fonctions dérivées, intégrables au sens de Riemann et sur les dérivées partielles mixtes , 1958 .
[41] M. Borel. Les probabilités dénombrables et leurs applications arithmétiques , 1909 .
[42] Herrmann Hankel,et al. Untersuchungen über die unendlich oft oscillirenden und unstetigen Functionen , 1882 .
[43] D. Dzhafarov,et al. Reverse Mathematics: Problems, Reductions, and Proofs , 2022, Theory and Applications of Computability.
[44] Sam Sanders. Reverse Mathematics of the uncountability of R ⋆ , 2022 .
[45] L. Holá. There are 2 c Quasicontinuous Non Borel Functions on Uncountable Polish Space , 2021 .
[46] John Stillwell,et al. Reverse Mathematics: Proofs from the Inside Out , 2018 .
[47] S. G. Simpson,et al. Notions of compactness in weak subsystems of second order arithmetic , 2016 .
[48] Stephen G. Simpson,et al. Reverse Mathematics 2001 , 2016 .
[49] H. Lebesgue,et al. Leçons sur l'intégration et la recherche des fonctions primitives professées au Collège de France , 2009 .
[50] R. E. Bradley,et al. On real functions. , 2009 .
[51] James Hunter,et al. HIGHER-ORDER REVERSE TOPOLOGY , 2008 .
[52] J. Hirst. Representations of Reals in Reverse Mathematics , 2007 .
[53] Fred Richman,et al. Omniscience Principles and Functions of Bounded Variation , 2002, Math. Log. Q..
[54] Aleksander Maliszewski. On the Products of Bounded Darboux Baire One Functions , 1999 .
[55] J. Ceder,et al. Some Characterizations of Darboux Baire 1 Functions , 1997 .
[56] J. Borsík. Sums of quasicontinuous functions defined on psuedometrizable spaces , 1996 .
[57] Z. Grande. On some representations of a.e. continuous functions , 1995 .
[58] Kirchheim. BAIRE ONE STAR FUNCTIONS , 1992 .
[59] A. Kechris,et al. A classification of Baire class 1 functions , 1990 .
[60] P. Venugopalan,et al. Quasicontinuous posets , 1990 .
[61] John L. Pfaltz,et al. Computer data structures , 1977 .
[62] C. Goffman,et al. The structure of regulated functions , 1976 .
[63] R. J. O'malley. Baire* 1, Darboux functions , 1976 .
[64] Anna Neubrunnová. On quasicontinuous and cliquish functions , 1974 .
[65] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[66] Daniel Waterman,et al. On convergence of Fourier sereies of functions of generalized bounded variation , 1972 .
[67] C. Goffman. Everywhere Convergence of Fourier Series , 1970 .
[68] A. Heyting. Recent Progress in Intuitionistic Analysis , 1970 .
[69] H. W. Ellis. Darboux Properties and Applications to Non-Absolutely Convergent Integrals , 1951, Canadian Journal of Mathematics.
[70] K. Kodaira. Über die Gruppe der messbaren Abbildungen , 1941 .
[71] J. Thomae,et al. Einleitung in die Theorie der bestimmten Integrale , 1875 .
[72] G. Darboux,et al. Mémoire sur les fonctions discontinues , 1875 .