The Biggest Five of Reverse Mathematics

The aim of Reverse Mathematics(RM for short)is to find the minimal axioms needed to prove a given theorem of ordinary mathematics. These minimal axioms are almost always equivalent to the theorem, working over the base theory of RM, a weak system of computable mathematics. The Big Five phenomenon of RM is the observation that a large number of theorems from ordinary mathematics are either provable in the base theory or equivalent to one of only four systems; these five systems together are called the 'Big Five'. The aim of this paper is to greatly extend the Big Five phenomenon as follows: there are two supposedly fundamentally different approaches to RM where the main difference is whether the language is restricted to second-order objects or if one allows third-order objects. In this paper, we unite these two strands of RM by establishing numerous equivalences involving the second-order Big Five systems on one hand, and well-known third-order theorems from analysis about (possibly) discontinuous functions on the other hand. We both study relatively tame notions, like cadlag or Baire 1, and potentially wild ones, like quasi-continuity. We also show that slight generalisations and variations of the aforementioned third-order theorems fall far outside of the Big Five.

[1]  D. Normann,et al.  The Biggest Five of Reverse Mathematics , 2023, Journal of Mathematical Logic.

[2]  D. Normann,et al.  On the computational properties of basic mathematical notions , 2022, J. Log. Comput..

[3]  George Voutsadakis,et al.  Introduction to Set Theory , 2021, A Problem Based Journey from Elementary Number Theory to an Introduction to Matrix Theory.

[4]  Sam Sanders,et al.  Splittings and Robustness for the Heine-Borel Theorem , 2021, CiE.

[5]  Rodney G. Downey,et al.  Cousin’s lemma in second-order arithmetic , 2021, Proceedings of the American Mathematical Society, Series B.

[6]  Jordan Barrett The reverse mathematics of Cousin's lemma. , 2020, 2011.13060.

[7]  Sam Sanders,et al.  Countable sets versus sets that are countable in reverse mathematics , 2020, Comput..

[8]  D. Normann,et al.  The Axiom of Choice in computability theory and Reverse Mathematics with a cameo for the Continuum Hypothesis , 2020, J. Log. Comput..

[9]  Joseph S. Miller,et al.  Highness properties close to PA completeness , 2019, 1912.03016.

[10]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[11]  Dag Normann,et al.  Pincherle's theorem in reverse mathematics and computability theory , 2018, Ann. Pure Appl. Log..

[12]  Dag Normann,et al.  On the mathematical and foundational significance of the uncountable , 2017, J. Math. Log..

[13]  ANDRÉ NIES,et al.  THE REVERSE MATHEMATICS OF THEOREMS OF JORDAN AND LEBESGUE , 2017, The Journal of Symbolic Logic.

[14]  Xiaoyong Xi,et al.  The Equivalence of QRB, QFS, and Compactness for Quasicontinuous Domains , 2015, Order.

[15]  N. Merentes,et al.  Bounded Variation and Around , 2013 .

[16]  Alexander P. Kreuzer,et al.  Bounded variation and the strength of Helly's selection theorem , 2013, Log. Methods Comput. Sci..

[17]  L. Holá,et al.  Pointwise convergence of quasicontinuous mappings and Baire spaces , 2011 .

[18]  Sam Sanders,et al.  The Dirac delta function in two settings of Reverse Mathematics , 2011, Archive for Mathematical Logic.

[19]  Antonio Montalbán,et al.  Open Questions in Reverse Mathematics , 2011, The Bulletin of Symbolic Logic.

[20]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[21]  Jimmie D. Lawson,et al.  Quasicontinuous functions, domains, and extended calculus , 2007 .

[22]  Xizhong Zheng,et al.  Effective Jordan Decomposition , 2005, Theory of Computing Systems.

[23]  Takeshi Yamazaki,et al.  Uniform versions of some axioms of second order arithmetic , 2004, Math. Log. Q..

[24]  C. Villani Topics in Optimal Transportation , 2003 .

[25]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[26]  Ulrich Kohlenbach,et al.  On uniform weak König's lemma , 2002, Ann. Pure Appl. Log..

[27]  Douglas S. Bridges,et al.  Bounded variation implies regulated: a constructive proof , 2001, Journal of Symbolic Logic.

[28]  Stephen G. Simpson,et al.  Located sets and reverse mathematics , 2000, Journal of Symbolic Logic.

[29]  U. Kohlenbach Higher Order Reverse Mathematics , 2000 .

[30]  Douglas S. Bridges,et al.  A Constructive Look at Functions of Bounded Variation , 2000 .

[31]  U. Kohlenbach Foundational and Mathematical Uses of Higher Types , 1999 .

[32]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[33]  Helmut Pfeiffer,et al.  Review: Wilfried Buchholz, Wolfram Pohlers, Wilfried Sieg, Iterated Inductive Definitions and Subsystems of Analysis , 1994 .

[34]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[35]  E. Lorch Continuity and Baire Functions , 1971 .

[36]  W. Worlton,et al.  The Art of Computer Programming , 1968 .

[37]  R. E. Zink On semicontinuous fuctions and Baire functions , 1965 .

[38]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[39]  E F Collingwood,et al.  CLUSTER SETS OF ARBITRARY FUNCTIONS. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Marcus Sur les fonctions dérivées, intégrables au sens de Riemann et sur les dérivées partielles mixtes , 1958 .

[41]  M. Borel Les probabilités dénombrables et leurs applications arithmétiques , 1909 .

[42]  Herrmann Hankel,et al.  Untersuchungen über die unendlich oft oscillirenden und unstetigen Functionen , 1882 .

[43]  D. Dzhafarov,et al.  Reverse Mathematics: Problems, Reductions, and Proofs , 2022, Theory and Applications of Computability.

[44]  Sam Sanders Reverse Mathematics of the uncountability of R ⋆ , 2022 .

[45]  L. Holá There are 2 c Quasicontinuous Non Borel Functions on Uncountable Polish Space , 2021 .

[46]  John Stillwell,et al.  Reverse Mathematics: Proofs from the Inside Out , 2018 .

[47]  S. G. Simpson,et al.  Notions of compactness in weak subsystems of second order arithmetic , 2016 .

[48]  Stephen G. Simpson,et al.  Reverse Mathematics 2001 , 2016 .

[49]  H. Lebesgue,et al.  Leçons sur l'intégration et la recherche des fonctions primitives professées au Collège de France , 2009 .

[50]  R. E. Bradley,et al.  On real functions. , 2009 .

[51]  James Hunter,et al.  HIGHER-ORDER REVERSE TOPOLOGY , 2008 .

[52]  J. Hirst Representations of Reals in Reverse Mathematics , 2007 .

[53]  Fred Richman,et al.  Omniscience Principles and Functions of Bounded Variation , 2002, Math. Log. Q..

[54]  Aleksander Maliszewski On the Products of Bounded Darboux Baire One Functions , 1999 .

[55]  J. Ceder,et al.  Some Characterizations of Darboux Baire 1 Functions , 1997 .

[56]  J. Borsík Sums of quasicontinuous functions defined on psuedometrizable spaces , 1996 .

[57]  Z. Grande On some representations of a.e. continuous functions , 1995 .

[58]  Kirchheim BAIRE ONE STAR FUNCTIONS , 1992 .

[59]  A. Kechris,et al.  A classification of Baire class 1 functions , 1990 .

[60]  P. Venugopalan,et al.  Quasicontinuous posets , 1990 .

[61]  John L. Pfaltz,et al.  Computer data structures , 1977 .

[62]  C. Goffman,et al.  The structure of regulated functions , 1976 .

[63]  R. J. O'malley Baire* 1, Darboux functions , 1976 .

[64]  Anna Neubrunnová On quasicontinuous and cliquish functions , 1974 .

[65]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[66]  Daniel Waterman,et al.  On convergence of Fourier sereies of functions of generalized bounded variation , 1972 .

[67]  C. Goffman Everywhere Convergence of Fourier Series , 1970 .

[68]  A. Heyting Recent Progress in Intuitionistic Analysis , 1970 .

[69]  H. W. Ellis Darboux Properties and Applications to Non-Absolutely Convergent Integrals , 1951, Canadian Journal of Mathematics.

[70]  K. Kodaira Über die Gruppe der messbaren Abbildungen , 1941 .

[71]  J. Thomae,et al.  Einleitung in die Theorie der bestimmten Integrale , 1875 .

[72]  G. Darboux,et al.  Mémoire sur les fonctions discontinues , 1875 .