Confidence-based Optimization for the Newsvendor Problem

We consider the problem of controlling the inventory of a single item with stochastic demand over a single period. Most of the research on single-period inventory models has focused on the case in which demand distribution parameters are known. Nevertheless, it is clear that the applicability of these models directly depends on the accuracy of demand parameters estimation. In this work, we introduce a novel strategy to address the issue of demand estimation in single-period inventory optimization problems. Our strategy is based on the theory of statistical estimation. We assume that the decision maker is given a set of past demand samples and we employ confidence interval analysis in order to identify a range of candidate order quantities that, with prescribed confidence probability, includes the real optimal order quantity for the underling stochastic demand process with unknown parameter. In addition, for each candidate order quantity that is identified, our approach can produce an upper and a lower bound for the associated cost. We apply our novel approach to three demand distribution in the exponential family: Binomial, Poisson, and Exponential. For two of these distributions we also discuss the extension to the case of unobserved lost sales. Numerical examples are presented in which we show how our approach complements existing strategies based on maximum likelihood estimators or on Bayesian analysis. keywords: inventory control; newsvendor problem; sampling; confidence interval analysis; demand estimation.

[1]  Alexander Shapiro,et al.  Coherent risk measures in inventory problems , 2007, Eur. J. Oper. Res..

[2]  Erling B. Andersen,et al.  Sufficiency and Exponential Families for Discrete Sample Spaces , 1970 .

[3]  Ananth V. Iyer,et al.  Improved Fashion Buying with Bayesian Updates , 1997, Oper. Res..

[4]  I. Moon,et al.  The Distribution Free Newsboy Problem with Balking , 1995 .

[5]  J. George Shanthikumar,et al.  A practical inventory control policy using operational statistics , 2005, Oper. Res. Lett..

[6]  J. Bradford,et al.  A Bayesian Approach to the Two-period Style-goods Inventory Problem with Single Replenishment and Heterogeneous Poisson Demands , 1990 .

[7]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[8]  G. Gallego,et al.  The Distribution Free Newsboy Problem: Review and Extensions , 1993 .

[9]  M. Khouja The single-period (news-vendor) problem: literature review and suggestions for future research , 1999 .

[10]  Roger M. Hill Parameter estimation and performance measurement in lost sales inventory systems , 1992 .

[11]  Alan J. Lee,et al.  Confidence regions for multinomial parameters , 2002 .

[12]  H. Scarf Bayes Solutions of the Statistical Inventory Problem , 1959 .

[13]  James H. Bookbinder,et al.  Order-statistic calculation, costs, and service in an (s, Q) inventory system , 1994 .

[14]  Michael Bruce Swift,et al.  Comparison of Confidence Intervals for a Poisson Mean – Further Considerations , 2009 .

[15]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[16]  M. Evans Statistical Distributions , 2000 .

[17]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[18]  Richard A. Levine,et al.  Production, Manufacturing and Logistics Bayesian demand updating in the lost sales newsvendor problem: A two-moment approximation q , 2007 .

[19]  R. Hill Applying Bayesian methodology with a uniform prior to the single period inventory model , 1997 .

[20]  J. Neyman Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability , 1937 .

[21]  W. E. Wecker Predicting Demand from Sales Data in the Presence of Stockouts , 1978 .

[22]  Stefan Van Dongen,et al.  Prior specification in Bayesian statistics: three cautionary tales. , 2006, Journal of theoretical biology.

[23]  Djalil CHAFAÏ,et al.  Confidence Regions for the Multinomial Parameter With Small Sample Size , 2008, 0805.1971.

[24]  R. Hayes Efficiency of Simple Order Statistic Estimates When Losses are Piecewise Linear , 1971 .

[25]  Wojciech Zielinski,et al.  The Shortest Clopper–Pearson Confidence Interval for Binomial Probability , 2009, Commun. Stat. Simul. Comput..

[26]  Peter Harremoës,et al.  Binomial and Poisson distributions as maximum entropy distributions , 2001, IEEE Trans. Inf. Theory.

[27]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[28]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[29]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Inventory Theory , 2006, Oper. Res..

[30]  Kishor S. Trivedi Probability and Statistics with Reliability, Queuing, and Computer Science Applications , 1984 .

[31]  H. Scarf Some remarks on bayes solutions to the inventory problem , 1960 .

[32]  Amy Hing-Ling Lau,et al.  Estimating the demand distributions of single-period items having frequent stockouts , 1996 .

[33]  Daniel Bienstock,et al.  Computing robust basestock levels , 2008, Discret. Optim..

[34]  W. Lovejoy Myopic policies for some inventory models with uncertain demand distributions , 1990 .

[35]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[36]  L. L. Cam,et al.  Maximum likelihood : an introduction , 1990 .

[37]  D. Iglehart The Dynamic Inventory Problem with Unknown Demand Distribution , 1964 .

[38]  Robert H. Hayes,et al.  Statistical Estimation Problems in Inventory Control , 1969 .

[39]  Evan L. Porteus,et al.  Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales , 1999 .

[40]  Martin L. Puterman,et al.  The Censored Newsvendor and the Optimal Acquisition of Information , 2002, Oper. Res..

[41]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[42]  Chih-ming Lee,et al.  A Bayesian approach to determine the value of information in the newsboy problem , 2008 .

[43]  Ronald D. Fricker,et al.  Applying a bootstrap approach for setting reorder points in military supply systems , 2000 .

[44]  Peter C. Bell Adaptive Sales Forecasting with Many Stockouts , 1981 .

[45]  Woonghee Tim Huh,et al.  An Adaptive Algorithm for Finding the Optimal Base-Stock Policy in Lost Sales Inventory Systems with Censored Demand , 2009, Math. Oper. Res..

[46]  Li Chen,et al.  Bounds and Heuristics for Optimal Bayesian Inventory Control with Unobserved Lost Sales , 2010, Oper. Res..

[47]  Diego Klabjan,et al.  Robust Stochastic Lot-Sizing by Means of Histograms , 2013 .

[48]  J. Neyman,et al.  FIDUCIAL ARGUMENT AND THE THEORY OF CONFIDENCE INTERVALS , 1941 .

[49]  Jing-Sheng Song,et al.  Inventory Control with Unobservable Lost Sales and Bayesian Updates , 2008 .

[50]  Georgia Perakis,et al.  Regret in the Newsvendor Model with Partial Information , 2008, Oper. Res..

[51]  S. A. Conrad,et al.  Sales Data and the Estimation of Demand , 1976 .

[52]  Min-Chiang Wang,et al.  Expected Value of Distribution Information for the Newsvendor Problem , 2006, Oper. Res..

[53]  Bahar Biller,et al.  Improved Inventory Targets in the Presence of Limited Historical Demand Data , 2011, Manuf. Serv. Oper. Manag..

[54]  David B. Shmoys,et al.  Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models , 2007, Math. Oper. Res..

[55]  Suresh P. Sethi,et al.  Bayesian and Adaptive Controls for a Newsvendor Facing Exponential Demand , 2010, Risk Decis. Anal..

[56]  Melvyn Sim,et al.  Robust Approximation to Multiperiod Inventory Management , 2010, Oper. Res..

[57]  Ilias S. Kevork Estimating the optimal order quantity and the maximum expected profit for single-period inventory decisions , 2010 .

[58]  Terry Williams,et al.  Probability and Statistics with Reliability, Queueing and Computer Science Applications , 1983 .

[59]  Stephen A. Smith,et al.  Estimating negative binomial demand for retail inventory management with unobservable lost sales , 1996 .

[60]  D. Simchi-Levi,et al.  Minimax analysis for finite-horizon inventory models , 2001 .

[61]  S. Nahmias Demand estimation in lost sales inventory systems , 1994 .

[62]  F. Garwood,et al.  i) Fiducial Limits for the Poisson Distribution , 1936 .

[63]  Katy S. Azoury Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution , 1985 .

[64]  James H. Bookbinder,et al.  Estimation of Inventory Re-Order Levels Using the Bootstrap Statistical Procedure , 1989 .

[65]  L. M. M.-T. Theory of Probability , 1929, Nature.

[66]  Roger M. Hill Bayesian decision-making in inventory modelling , 1999 .