Satellite-based distribution of hybrid entanglement

Heterogeneous quantum networks consisting of mixed-technologies - Continuous Variable (CV) and Discrete Variable (DV) - will become ubiquitous as global quantum communication matures. Hybrid quantum-entanglement between CV and DV modes will be a critical resource in such networks. A leading candidate for such hybrid quantum entanglement is that between Schrodinger-cat states and photon-number states. In this work, we explore the use of Two-Mode Squeezed Vacuum (TMSV) states, distributed from satellites, as a teleportation resource for the re-distribution of our candidate hybrid entanglement pre-stored within terrestrial quantum networks. We determine the loss conditions under which teleportation via the TMSV resource outperforms direct-satellite distribution of the hybrid entanglement, in addition to quantifying the advantage of teleporting the DV mode relative to the CV mode. Our detailed calculations show that under the loss conditions anticipated from Low-Earth-Orbit, DV teleportation via the TMSV resource will always provide for significantly improved outcomes, relative to other means for distributing hybrid entanglement within heterogeneous quantum networks.

[1]  K. Mølmer,et al.  Transforming squeezed light into a large-amplitude coherent-state superposition , 2007, 0708.1956.

[2]  Peng Huang,et al.  Performance improvement of continuous-variable quantum key distribution via photon subtraction , 2013 .

[3]  Kae Nemoto,et al.  Schrödinger cats and their power for quantum information processing , 2004 .

[4]  L. Farias Continuous variable teleportation with Non-Gaussian resources in the characteristic function representation , 2009, 0903.5406.

[5]  U. Andersen,et al.  Hybrid long-distance entanglement distribution protocol. , 2010, Physical review letters.

[6]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[7]  Ryan C. Parker,et al.  Hybrid photonic loss resilient entanglement swapping , 2017, 1706.08492.

[8]  Paulina Marian,et al.  Continuous-variable teleportation in the characteristic-function description , 2006 .

[9]  P. Loock,et al.  Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement , 2011, 1111.0478.

[10]  ShengLi Zhang Improving long-distance distribution of entangled coherent state with the method of twin-field quantum key distribution. , 2019, Optics express.

[11]  Hua-Lei Yin,et al.  Coherent-State-Based Twin-Field Quantum Key Distribution , 2019, Scientific Reports.

[12]  Yu-Bo Sheng,et al.  Hybrid entanglement purification for quantum repeaters , 2013 .

[13]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[14]  I. Malkin,et al.  EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR , 1974 .

[15]  A I Lvovsky,et al.  Entanglement and teleportation between polarization and wave-like encodings of an optical qubit , 2017, Nature Communications.

[16]  Julien Laurat,et al.  Remote creation of hybrid entanglement between particle-like and wave-like optical qubits , 2013, Nature Photonics.

[17]  M. Takeoka,et al.  Continuous variable teleportation as a quantum channel , 2003 .

[18]  Ming Li,et al.  Evaluation of channel capacities of OAM-based FSO link with real-time wavefront correction by adaptive optics. , 2014, Optics express.

[19]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[20]  Shuntaro Takeda,et al.  Gain tuning for continuous-variable quantum teleportation of discrete-variable states , 2013, 1308.3764.

[21]  D Markham,et al.  Demonstration of Einstein-Podolsky-Rosen Steering Using Hybrid Continuous- and Discrete-Variable Entanglement of Light. , 2018, Physical review letters.

[22]  T. Ralph,et al.  Fault-tolerant linear optical quantum computing with small-amplitude coherent States. , 2007, Physical review letters.

[23]  J. Laurat,et al.  Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light , 2018, Optica.

[24]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[25]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[26]  Hua-Lei Yin,et al.  Finite-key analysis for twin-field quantum key distribution with composable security , 2019, Scientific Reports.

[27]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[28]  Ryan C. Parker A Loss Resilient Entanglement Swapping Protocol using Non-Classical States of Light , 2018 .

[29]  S. M. Zhao,et al.  Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. , 2012, Optics Express.

[30]  Hyunseok Jeong,et al.  Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation , 2005, quant-ph/0507095.

[31]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[32]  Realistic continuous-variable quantum teleportation with non-Gaussian resources , 2009, 0910.2713.

[33]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[34]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[35]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[36]  Seok Hyung Lie,et al.  Limitations of teleporting a qubit via a two-mode squeezed state , 2019, Photonics Research.

[37]  A. Furusawa,et al.  Entanglement swapping between discrete and continuous variables. , 2014, Physical review letters.

[38]  J. Laurat,et al.  Engineering optical hybrid entanglement between discrete- and continuous-variable states , 2019, New Journal of Physics.

[39]  Knight,et al.  Properties of displaced number states. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[40]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[41]  N. Gisin,et al.  Quantum repeaters with entangled coherent states , 2009, 0912.3871.

[42]  Kaushik P. Seshadreesan,et al.  Non-Gaussian entangled states and quantum teleportation of Schrödinger-cat states , 2013, 1306.3168.

[43]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[44]  Fabrizio Illuminati,et al.  Non-Gaussian swapping of entangled resources , 2018, Quantum Inf. Process..

[45]  A I Lvovsky,et al.  Quantum Teleportation Between Discrete and Continuous Encodings of an Optical Qubit. , 2016, Physical review letters.

[46]  Robert Malaney,et al.  Hybrid Entanglement Swapping for Satellite-Based Quantum Communications , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[47]  Hyunseok Jeong,et al.  Loss-resilient photonic entanglement swapping using optical hybrid states , 2016, 1608.04882.

[48]  Christopher C. Gerry,et al.  GENERATION OF OPTICAL MACROSCOPIC QUANTUM SUPERPOSITION STATES VIA STATE REDUCTION WITH A MACH-ZEHNDER INTERFEROMETER CONTAINING A KERR MEDIUM , 1999 .