Parallel data processing with MapReduce

A prominent parallel data processing tool MapReduce is gaining significant momentum from both industry and academia as the volume of data to analyze grows rapidly. While MapReduce is used in many a...

[1]  Shivnath Babu,et al.  Towards automatic optimization of MapReduce programs , 2010, SoCC '10.

[2]  Rajkumar Buyya,et al.  MRPGA: An Extension of MapReduce for Parallelizing Genetic Algorithms , 2008, 2008 IEEE Fourth International Conference on eScience.

[3]  Douglas Stott Parker,et al.  Map-reduce-merge: simplified relational data processing on large clusters , 2007, SIGMOD '07.

[4]  Christoforos E. Kozyrakis,et al.  Evaluating MapReduce for Multi-core and Multiprocessor Systems , 2007, 2007 IEEE 13th International Symposium on High Performance Computer Architecture.

[5]  David A. Patterson,et al.  Technical perspective: the data center is the computer , 2008, CACM.

[6]  Jeremy T. Bradley,et al.  Distributed Response Time Analysis of GSPN Models with MapReduce , 2008, 2008 International Symposium on Performance Evaluation of Computer and Telecommunication Systems.

[7]  Howard Gobioff,et al.  The Google file system , 2003, SOSP '03.

[8]  Naga K. Govindaraju,et al.  Mars: A MapReduce Framework on graphics processors , 2008, 2008 International Conference on Parallel Architectures and Compilation Techniques (PACT).

[9]  Tian Xia Large-Scale SMS Messages Mining Based on Map-Reduce , 2008, 2008 International Symposium on Computational Intelligence and Design.

[10]  Ralf Lämmel,et al.  Google's MapReduce programming model - Revisited , 2007, Sci. Comput. Program..

[11]  Philip Heng Wai Leong,et al.  Map-reduce as a Programming Model for Custom Computing Machines , 2008, 2008 16th International Symposium on Field-Programmable Custom Computing Machines.

[12]  Michael C. Schatz,et al.  CloudBurst: highly sensitive read mapping with MapReduce , 2009, Bioinform..

[13]  Kevin D. Seppi,et al.  Parallel PSO using MapReduce , 2007, 2007 IEEE Congress on Evolutionary Computation.

[14]  Jeffrey D. Ullman,et al.  Optimizing joins in a map-reduce environment , 2010, EDBT '10.

[15]  Geoffrey C. Fox,et al.  MapReduce for Data Intensive Scientific Analyses , 2008, 2008 IEEE Fourth International Conference on eScience.

[16]  Daniela Florescu,et al.  Rethinking cost and performance of database systems , 2009, SGMD.

[17]  David J. DeWitt,et al.  Weaving Relations for Cache Performance , 2001, VLDB.

[18]  Jignesh M. Patel,et al.  Energy management for MapReduce clusters , 2010, Proc. VLDB Endow..

[19]  Jon Feldman,et al.  Using Many Machines to Handle an Enormous Error-Correcting Code , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[20]  Samuel Madden,et al.  Osprey: Implementing MapReduce-style fault tolerance in a shared-nothing distributed database , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[21]  Ronald C. Taylor An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics , 2010, BMC Bioinformatics.

[22]  Karthikeyan Sankaralingam,et al.  MapReduce for the Cell Broadband Engine Architecture , 2009, IBM J. Res. Dev..

[23]  Kiyoung Kim,et al.  MRBench: A Benchmark for MapReduce Framework , 2008, 2008 14th IEEE International Conference on Parallel and Distributed Systems.

[24]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[25]  Songting Chen,et al.  Cheetah , 2010, Proc. VLDB Endow..