Thermometers and Barometers for Volcanic Systems

Knowledge of temperature and pressure, however qualitative, has been central to our views of geology since at least the early 19th century. In 1822, for example, Charles Daubeny presented what may be the very first “Geological Thermometer,” comparing temperatures of various geologic processes (Torrens 2006). Daubeny (1835) may even have been the first to measure the temperature of a lava flow, by laying a thermometer on the top of a flow at Vesuvius—albeit several months following the eruption, after intervening rain (his estimate was 390°F). In any case, pressure ( P ) and temperature ( T ) estimation lie at the heart of fundamental questions: How hot is Earth, and at what rate has the planet cooled. Are volcanoes the products of thermally driven mantle plumes? Where are magmas stored, and how are they transported to the surface—and how do storage and transport relate to plate tectonics? Well-calibrated thermometers and barometers are essential tools if we are to fully appreciate the driving forces and inner workings of volcanic systems. This chapter presents methods to estimate the P-T conditions of volcanic and other igneous processes. The coverage includes a review of existing geothermometers and geobarometers, and a presentation of approximately 30 new models, including a new plagioclase-liquid hygrometer. Our emphasis is on experimentally calibrated “thermobarometers,” based on analytic expressions using P or T as dependent variables. For numerical reasons (touched on below) such expressions will always provide the most accurate means of P-T estimation, and are also most easily employed. Analytical expressions also allow error to be ascertained; in the absence of estimates of error, P-T estimates are nearly meaningless. This chapter is intended to complement the chapters by Anderson et al. (2008), who cover granitic systems, and by Blundy and Cashman (2008) and Hansteen and Klugel (2008), who consider additional methods …

[1]  G. Gudfinnsson,et al.  Melting relations of model lherzolite in the system CaO‐MgO‐Al2O3‐SiO2 at 2.4–3.4 GPa and the generation of komatiites , 1996 .

[2]  P. Long,et al.  Magma mixing at mid-ocean ridges: Evidence from basalts drilled near 22° N on the Mid-Atlantic Ridge , 1979 .

[3]  A. Buddington,et al.  Thermometric and petrogenetic significance of titaniferous magnetite , 1955 .

[4]  F. Albarède,et al.  The evolution of Mauna Kea Volcano, Hawaii: Petrogenesis of tholeiitic and alkalic basalts , 1991 .

[5]  P. Nimis,et al.  Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer , 2000 .

[6]  D. Weis,et al.  Experimental constraints on the origin and evolution of mildly alkalic basalts from the Kerguelen Archipelago, Southeast Indian Ocean , 2006 .

[7]  D. Lindsley,et al.  Chemistry and phase relations of VLT volcanic glasses from Apollo 14 and Apollo 17. [Very Low Titanium , 1982 .

[8]  H. Sigurdsson,et al.  Experimental constraints on pre-eruptive water contents and changing magma storage prior to explosive eruptions of Mount St Helens volcano , 1995 .

[9]  S. Klemme,et al.  The near-solidus transition from garnet lherzolite to spinel lherzolite , 2000 .

[10]  B. Scaillet,et al.  Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust , 2001, Nature.

[11]  P. Beattie Olivine-melt and orthopyroxene-melt equilibria , 1993 .

[12]  C. Thornber,et al.  Geothermometry of Kilauea Iki lava lake, Hawaii , 1987 .

[13]  D. Laporte,et al.  A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite , 2004 .

[14]  B. Wood,et al.  Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman Province potassic magmas , 2001 .

[15]  Michael J. Drake Plagioclase—melt equilibria , 1976 .

[16]  Michael O. Garcia,et al.  Evolution of Mauna Kea Volcano, Hawaii: Petrologic and geochemical constraints on postshield volcanism , 1990 .

[17]  O. F. Tuttle,et al.  ORIGIN OF GRANITE IN THE LIGHT OF EXPERIMENTAL STUDIES IN THE SYSTEM NaAlSi3O8–KAlSi3O8–SiO2–H2O , 1958 .

[18]  P. Kelemen,et al.  The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study , 2001 .

[19]  James Hall III. Experiments on Whinstone and Lava , 1805, Transactions of the Royal Society of Edinburgh.

[20]  E. S. Larsen,et al.  Quartz as a geologic thermometer , 1909 .

[21]  W. Bryan,et al.  Experimental petrology of normal MORB near the Kane Fracture Zone: 22°–25° N, mid-Atlantic ridge , 1987 .

[22]  E. Stolper,et al.  Melt density and the average composition of basalt , 1980 .

[23]  H. Seck,et al.  Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas , 1997 .

[24]  J. Nicholls,et al.  Silica activity in igneous rocks , 1970 .

[25]  T. Grove,et al.  Mantle melting beneath the Tibetan Plateau: Experimental constraints on ultrapotassic magmatism , 2008 .

[26]  T. Parsons,et al.  Does magmatism influence low-angle normal faulting? , 1993 .

[27]  N. Chatterjee,et al.  Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends , 2003 .

[28]  A. Kent,et al.  Near-solidus Melting of the Shallow Upper Mantle: Partial Melting Experiments on Depleted Peridotite , 2003 .

[29]  A. P. Douce,et al.  Vapor-Absent Melting of Tonalite at 15–32 kbar , 2004 .

[30]  D. Green,et al.  Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10 kbar: Implications for the origin of primitive MORB glasses , 1987 .

[31]  J. Hammer Experimental Studies of the Kinetics and Energetics of Magma Crystallization , 2008 .

[32]  T. Grove,et al.  Ternary feldspar experiments and thermodynamic models , 1990 .

[33]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[34]  A. P. Douce,et al.  Experimental generation of hybrid silicic melts by reaction of high‐Al basalt with metamorphic rocks , 1995 .

[35]  R. Kinzler Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid‐ocean ridge basalt petrogenesis , 1997 .

[36]  D. Canil The Ni-in-garnet geothermometer: calibration at natural abundances , 1999 .

[37]  J. Stormer,et al.  The distribution of NaAlSi 3 O 8 between coexisting microcline and plagioclase and its effect on geothermometric calculations , 1977 .

[38]  E. Stolper Experimental petrology of eucritic meteorites , 1977 .

[39]  M. Fuhrman,et al.  Ternary-feldspar modeling and thermometry , 1988 .

[40]  J. Longhi,et al.  The parent magmas of the SNC meteorites. , 1989 .

[41]  Hiroaki Sato,et al.  Experimental study of a low-alkali tholeiite at 1–5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite , 2005 .

[42]  T. Loomis An empirical model for plagioclase equilibrium in hydrous melts , 1979 .

[43]  A. Treiman,et al.  Experimental petrology of the basaltic shergottite Yamato‐980459: Implications for the thermal structure of the Martian mantle , 2006 .

[44]  G. Gaetani,et al.  The influence of water on melting of mantle peridotite , 1998 .

[45]  T. Fujii,et al.  H2O-rich island arc low-K tholeiite magma inferred from Ca-rich plagioclase-melt inclusion equilibria , 2007 .

[46]  P. Nimis A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling , 1995 .

[47]  P. Ulmer,et al.  Clinopyroxene geobarometry of magmatic rocks Part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems , 1998 .

[48]  J. Longhi Some phase equilibrium systematics of lherzolite melting: I , 2002 .

[49]  C. Herzberg,et al.  Plume-Associated Ultramafic Magmas of Phanerozoic Age , 2002 .

[50]  Berlin Chen,et al.  Melting experiment of a Wannienta basalt in the Kuanyinshan area, northern Taiwan, at pressures up to 2.0 GPa , 2000 .

[51]  W. Bryan,et al.  2. NATURAL AND EXPERIMENTAL PHASE RELATIONS OF LAVAS FROM SEROCKI VOLCANO1 , 1990 .

[52]  M. Fram,et al.  30. LOW PRESSURE EXPERIMENTAL CONSTRAINTS ON THE EVOLUTION OF BASALTIC LAVAS FROM SITE 917, SOUTHEAST GREENLAND CONTINENTAL MARGIN 1 , 1998 .

[53]  A. Ariskin Phase equilibria modeling in igneous petrology: use of COMAGMAT model for simulating fractionation of ferro-basaltic magmas and the genesis of high-alumina basalt , 1999 .

[54]  C. Agee,et al.  Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle , 2004 .

[55]  J. Rhodes,et al.  Composition of basaltic lavas sampled by phase‐2 of the Hawaii Scientific Drilling Project: Geochemical stratigraphy and magma types , 2004 .

[56]  M. D. Wit,et al.  EMPLACEMENT CONDITIONS OF KOMATIITE MAGMAS FROM THE 3.49 GA KOMATI FORMATION, BARBERTON GREENSTONE BELT, SOUTH AFRICA , 1997 .

[57]  E. T. Allen,et al.  The Isomorphism and Thermal Properties of the Feldspars , 2008 .

[58]  T. Grove,et al.  Experimental investigations of low-Ca pyroxene stability and olivine-pyroxene-liquid equilibria at 1-atm in natural basaltic and andesitic liquids , 1989 .

[59]  D. Walker,et al.  Cumulate maturation and melt migration in a temperature gradient , 1988 .

[60]  T. Köhler,et al.  Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers , 1990 .

[61]  Michael O. Garcia,et al.  Petrologic constraints on rift-zone processes , 1989 .

[62]  E. Médard,et al.  Liquidus surfaces of ultracalcic primitive melts: formation conditions and sources , 2004 .

[63]  A. Johnston,et al.  The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages , 2000 .

[64]  D. Green,et al.  Peridotite Melting at 1 GPa: Reversal Experiments on Partial Melt Compositions Produced by Peridotite–Basalt Sandwich Experiments , 2001 .

[65]  P. Nimis Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems , 1999 .

[66]  I. Carmichael,et al.  Hydrous phase equilibria of a Mexican high-silica andesite:A candidate for a mantle origin? , 2001 .

[67]  W. Hildreth,et al.  Magma storage prior to the 1912 eruption at Novarupta, Alaska , 2002 .

[68]  D. Lindsley,et al.  The Role of Pressure in Producing Compositional Diversity in Intraplate Basaltic Magmas , 2006 .

[69]  G. Mahood,et al.  Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily , 1986 .

[70]  D. L. Anderson Theory of Earth , 2014 .

[71]  M. Walter Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere , 1998 .

[72]  F. Innocenti,et al.  Mount Etna pyroxene as tracer of petrogenetic processes and dynamics of the feeding system , 2007 .

[73]  N. L. Bowen The Later Stages of the Evolution of the Igneous Rocks , 1915, The Journal of Geology.

[74]  K. Cooper,et al.  Uranium-series Crystal Ages , 2008 .

[75]  T. Hansteen,et al.  Fluid Inclusion Thermobarometry as a Tracer for Magmatic Processes , 2008 .

[76]  J. Longhi,et al.  A Reconnaisance Study of Phase Boundaries in Low-Alkali Basaltic Liquids , 1988 .

[77]  P. Roeder,et al.  Olivine-liquid equilibrium , 1970 .

[78]  T. Grove,et al.  The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models , 2008 .

[79]  Jean Besse,et al.  Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr , 2002 .

[80]  Donald H. Lindsley,et al.  A two-pyroxene thermometer , 1983 .

[81]  T. Sugawara Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications , 2001 .

[82]  A. Benisek,et al.  New developments in two-feldspar thermometry , 2004 .

[83]  K. Johnson Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures , 1998 .

[84]  E. Mathez Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks , 1973 .

[85]  Marie C. Johnson,et al.  Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar , 1996 .

[86]  G. Sen Experimental determination of pyroxene compositions in the system CaO-MgO-Al 2 O 3 -SiO 2 at 900-1200 degrees C and 10-15 kbar using PbO and H 2 O fluxes , 1985 .

[87]  B. Scaillet,et al.  Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc) , 2002 .

[88]  E. Essene Geologic thermometry and barometry , 1982 .

[89]  H. McSween,et al.  Phase equilibria of the Shergotty meteorite: Constraints on pre‐eruptive water contents of martian magmas and fractional crystallization under hydrous conditions , 2001 .

[90]  M. Toplis The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems , 2005 .

[91]  S. Nakada,et al.  Experimental Petrology of the 1991–1995 Unzen Dacite, Japan. Part I: Phase Relations, Phase Composition and Pre-eruptive Conditions , 2004 .

[92]  E. Takahashi Melting relations of an alkali-olivine basalt to 30 kbar, and their bearing on the origin of alkali basalt magmas , 1980 .

[93]  M. Hirschmann,et al.  Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa , 2003 .

[94]  H. Sigurdsson,et al.  The May 18, 1980, eruption of Mount St. Helens: 1. Melt composition and experimental phase equilibria , 1985 .

[95]  P. Kelemen,et al.  Reaction Between Ultramafic Rock and Fractionating Basaltic Magma II. Experimental Investigation of Reaction Between Olivine Tholeiite and Harzburgite at 1150–1050°C and 5 kb , 1990 .

[96]  Jaggar Thomas Augustus Thermal gradient of Kilauea lava lake , 1917 .

[97]  C. Agee,et al.  Aluminum partitioning between olivine and ultrabasic silicate liquid to 6 GPa , 1990 .

[98]  M. Raudsepp,et al.  Effects of kinetics on the crystallization of quartz normative basalt 15597 - An experimental study , 1978 .

[99]  J. Longhi,et al.  A Liquid Line of Descent of the Jotunite (Hypersthene Monzodiorite) Suite , 1998 .

[100]  J. Barclay,et al.  A Hornblende Basalt from Western Mexico: Water-saturated Phase Relations Constrain a Pressure---Temperature Window of Eruptibility , 2004 .

[101]  T. Grove,et al.  Origin of lunar ultramafic green glasses: constraints from phase equilibrium studies , 2000 .

[102]  T. L. Wright,et al.  The fractionation of nickel between olivine and augite as a geothermometer , 1967 .

[103]  S. Morse,et al.  Experimental Petrology of the Kiglapait Intrusion: Cotectic Trace for the Lower Zone at 5 kbar in Graphite , 2004 .

[104]  Y. Bottinga,et al.  The viscosity of magmatic silicate liquids; a model calculation , 1972 .

[105]  K. Putirka Magma transport at Hawaii: Inferences based on igneous thermobarometry , 1997 .

[106]  D. C. Gerlach,et al.  Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing , 1982 .

[107]  G. Wasserburg,et al.  An experimental study of trace-element partitioning between Ti-Al-clinopyroxene and melt: Equilibrium and kinetic effects including sector zoning , 2006 .

[108]  M. Ghiorso Modeling magmatic systems; thermodynamic relations , 1987 .

[109]  R. Johnson,et al.  Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea , 1990 .

[110]  R. T. Helz Phase Relations of Basalts in their Melting Ranges at PH2O = 5 kb. Part II. Melt Compositions , 1976 .

[111]  A. Klügel,et al.  Complex magma storage and ascent at embryonic submarine volcanoes from the Madeira Archipelago , 2006 .

[112]  T. Green,et al.  P-T phase relations of silicic, alkaline, aluminous liquids: new results and applications to mantle melting and metasomatism , 1999 .

[113]  A. Girnis,et al.  Experimental melting of a modally heterogeneous mantle , 2002 .

[114]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[115]  F. Holtz,et al.  The water-undersaturated and dry Qz-Ab-Or system revisited. Experimental results at very low water activities and geological implications , 2001 .

[116]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[117]  J. Nicholls,et al.  The equilibration temperature and pressure of various lava types with spinel-and garnet-peridotite , 1972 .

[118]  T. Kawamoto,et al.  Experimental evidence for a hydrous transition zone in the early Earth's mantle , 1996 .

[119]  N. Harris,et al.  Experimental Constraints on Himalayan Anatexis , 1998 .

[120]  T. Grove,et al.  Primary magmas of mid‐ocean ridge basalts 1. Experiments and methods , 1992 .

[121]  C. Herzberg,et al.  Phase equilibrium constraints on the origin of basalts, picrites, and komatiites , 1998 .

[122]  N. L. Bowen The melting phenomena of the plagioclase feldspars , 1913 .

[123]  A. Glazner,et al.  Clinopyroxene thermobarometry of basalts from the Coso and Big Pine volcanic fields, California , 2006 .

[124]  B. Kjarsgaard Phase relations of a Carbonated High-CaO Nephelinite at 0.2 and 0.5 GPa , 1998 .

[125]  E. Wolfe,et al.  Petrology of lavas from episodes 2–47 of the Puu Oo eruption of Kilauea Volcano, Hawaii: Evaluation of magmatic processes , 1992 .

[126]  D. Baker,et al.  Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar; application to the Aleutian volcanic center of Atka , 1987 .

[127]  D. Walker,et al.  Experimental petrology of alkalic lavas: constraints on cotectics of multiple saturation in natural basic liquids , 1987 .

[128]  W. Ridley,et al.  Kilauea East Rift Zone Magmatism: an Episode 54 Perspective , 2003 .

[129]  A. Johnston,et al.  Anhydrous P-T phase relations of near-primary high-alumina basalt from the South Sandwich Islands , 1986 .

[130]  M. Minitti,et al.  Genesis of the Mars Pathfinder “sulfur-free” rock from SNC parental liquids , 2000 .

[131]  T. Brocher,et al.  Multichannel seismic evidence for a subcrustal intrusive complex under Oahu and a model for Hawaiian volcanism , 1987 .

[132]  T. Grove,et al.  Crystallization and differentiation of Archean komatiite lavas from Northeast Ontario; phase equilibrium and kinetic studies , 1985 .

[133]  B. E. Schwab,et al.  Melting Systematics of Modally Variable, Compositionally Intermediate Peridotites and the Effects of Mineral Fertility , 2001 .

[134]  Robert E. Jones,et al.  Experimental equilibration of multicomponent pyroxenes in the spinel peridotite field: Implications for practical thermometers and a possible barometer , 1989 .

[135]  S. Maaløe The PT-phase relations of an MgO-rich Hawaiian tholeiite: the compositions of primary Hawaiian tholeiites , 2004 .

[136]  K. Putirka Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations , 2005 .

[137]  F. Spear Metamorphic phase equilibria and pressure-temperature-time paths , 1993 .

[138]  Thomas P. Ryan,et al.  Modern Regression Methods , 1996 .

[139]  D. Draper,et al.  Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts , 1992 .

[140]  M. T. Naney Phase equilibria of rock-forming ferromagnesian silicates in granitic systems , 1983 .

[141]  B. Wood,et al.  Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems , 1973 .

[142]  B. Mysen,et al.  A possible effect of melt structure on the Mg-Fe2+ partitioning between olivine and melt , 2002 .

[143]  R. Powell,et al.  Plagioclase-alkali-feldspar geothermometry revisited , 1977, Mineralogical Magazine.

[144]  K. Putirka Excess temperatures at ocean islands: Implications for mantle layering and convection , 2008 .

[145]  J. Meen Formation of shoshonites from calcalkaline basalt magmas: geochemical and experimental constraints from the type locality , 1987 .

[146]  M. Hirschmann,et al.  Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions , 2001 .

[147]  K. Putirka Melting depths and mantle heterogeneity beneath Hawaii and the East Pacific Rise: Constraints from Na/Ti and rare earth element ratios , 1999 .

[148]  M. Fram,et al.  Phase equilibria of dikes associated with Proterozoic anorthosite complexes , 1992 .

[149]  K. Righter,et al.  Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition , 2006 .

[150]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[151]  A. Buddington,et al.  Iron-Titanium Oxide Minerals and Synthetic Equivalents , 1964 .

[152]  M. Hesse,et al.  Absarokites from the western Mexican Volcanic Belt: constraints on mantle wedge conditions , 2002 .

[153]  M. Walter,et al.  Mg‐Fe partitioning between olivine and mafic‐ultramafic melts , 1998 .

[154]  C. Porcher,et al.  Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern Brazil , 2002 .

[155]  I. Carmichael,et al.  The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth , 1998 .

[156]  O. F. Tuttle,et al.  The System NaAlSi3O8-KAlSi3O8-H2O , 1950, The Journal of Geology.

[157]  G. Foulger,et al.  Is "Hotspot" Volcanism a Consequence of Plate Tectonics? , 2003, Science.

[158]  M. Hirschmann,et al.  Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts , 2007 .

[159]  P. Ulmer,et al.  The Liquid Line of Descent of Anhydrous, Mantle-Derived, Tholeiitic Liquids by Fractional and Equilibrium Crystallization—an Experimental Study at 1·0 GPa , 2004 .

[160]  J. Longhi,et al.  Experimental study of a jotunite (hypersthene monzodiorite): constraints on the parent magma composition and crystallization conditions (P, T, fO2) of the Bjerkreim-Sokndal layered intrusion (Norway) , 1994 .

[161]  J. Meen Elevation of potassium content of basaltic magma by fractional crystallization: the effect of pressure , 1990 .

[162]  D. Green,et al.  Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kb and Application to Basalt Petrogenesis , 1988 .

[163]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.

[164]  A. Yasuda,et al.  Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa , 1994 .

[165]  C. E. Tilley,et al.  Origin of Basalt Magmas: An Experimental Study of Natural and Synthetic Rock Systems , 1962 .

[166]  C. Bacon,et al.  Stages in the P-T path of ascending basalt magma: An example from San Quintin, Baja California , 1973 .

[167]  L. Danyushevsky,et al.  Melting of Refractory Mantle at 1·5, 2 and 2·5 GPa under Anhydrous and H2O-undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting , 2000 .

[168]  J. Blundy,et al.  Magma heating by decompression-driven crystallization beneath andesite volcanoes , 2006, Nature.

[169]  M. Perfit,et al.  Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling , 2007 .

[170]  R. Botcharnikov,et al.  The effect of H2O on olivine crystallization in MORB: Experimental calibration at 200 MPa , 2007 .

[171]  E. Stolper A phase diagram for mid-ocean ridge basalts: Preliminary results and implications for petrogenesis , 1980 .

[172]  P. Thy High and low pressure phase equilibria of a mildly alkalic lava from the 1965 Surtsey eruption: Experimental results , 1991 .

[173]  K. Putirka Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes , 2005 .

[174]  F. R. Boyd,et al.  The join Mg2Si2O6-CaMgSi2O6 at 30 kilobars pressure and its application to pyroxenes from kimberlites , 1966 .

[175]  B. Scaillet,et al.  Experimental Crystallization of a High-K Arc Basalt: the Golden Pumice, Stromboli Volcano (Italy) , 2006 .

[176]  H. Bougault,et al.  Melting relations of a magnesian abyssal tholeiite and the origin of MORBs , 1983 .

[177]  J. Beard,et al.  Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar , 1995 .

[178]  J. Holloway,et al.  On the origin of some mica-lamprophyres: experimental evidence from a mafic minette , 1987 .

[179]  R. Macdonald,et al.  Experimental Constraints on the Relationships between Peralkaline Rhyolites of the Kenya Rift Valley , 2003 .

[180]  A. Glazner,et al.  Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust , 2005 .

[181]  P. Wells Pyroxene thermometry in simple and complex systems , 1977 .

[182]  K. Kurita,et al.  Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts , 1998 .

[183]  A. Crawford,et al.  An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase , 1995 .

[184]  J. Longhi Liquidus equilibria of some primary lunar and terrestrial melts in the garnet stability field , 1995 .

[185]  T. Grove,et al.  Crystallization kinetics in a multiply saturated basalt magma - An experimental study of Luna 24 ferrobasalt , 1979 .

[186]  R. Sack,et al.  Experimental Petrology of Melilite Nephelinites , 1988 .

[187]  J. Longhi,et al.  Trace element partitioning during the initial stages of melting beneath mid-ocean ridges , 1999 .

[188]  W. Bryan,et al.  Fractionation of pyroxene-phyric MORB at low pressure: An experimental study , 1983 .

[189]  S. Barnes The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure , 1986 .

[190]  T. Wagner,et al.  Experimental constraints on the origin of lunar high-Ti ultramafic glasses , 1997 .

[191]  T. Sisson,et al.  Temperatures and H2O contents of low-MgO high-alumina basalts , 1993 .

[192]  S. Ono,et al.  Mg–Fe partitioning between olivine and ultramafic melts at high pressures , 2006 .

[193]  K. Putirka Clinopyroxene + liquid equilibria to 100 kbar and 2450 K , 1999 .

[194]  M. Walter,et al.  Melting Behavior of Simplified Lherzolite in the System CaO-MgO-Al2O3-SiO2-Na2O from 7 to 35 kbar , 1994 .

[195]  D. Green,et al.  Ultra-calcic magmas generated from Ca-depleted mantle: an experimental study on the origin of ankaramites , 2004 .

[196]  T. Wagner,et al.  Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii , 1998 .

[197]  K. Haase The relationship between the age of the lithosphere and the composition of oceanic magmas: Constraints on partial melting, mantle sources and the thermal structure of the plates , 1996 .

[198]  F. Ryerson,et al.  New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho , 2003 .

[199]  K. Hirose,et al.  Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts , 1998 .

[200]  A. E. Ringwood,et al.  The genesis of basaltic magmas , 1967 .

[201]  T. Grove,et al.  High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California , 1991 .

[202]  Eiichi Takahahshi,et al.  Origin of the Columbia River basalts: melting model of a heterogeneous plume head , 1998 .

[203]  B. Wood,et al.  Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa , 2003 .

[204]  D. Green,et al.  EXPERIMENTAL TESTS OF LOW DEGREE PERIDOTITE PARTIAL MELT COMPOSITIONS: IMPLICATIONS FOR THE NATURE OF ANHYDROUS NEAR-SOLIDUS PERIDOTITE MELTS AT 1 GPA , 1997 .

[205]  J. Stormer A practical two-feldspar geothermometer , 1975 .

[206]  B. Marsh Solidification fronts and magmatic evolution , 1996, Mineralogical Magazine.

[207]  N. L. Bowen The ternary system; diopside-forsterite-silica , 1914 .

[208]  F. Holtz,et al.  Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano , 2001 .

[209]  B. Wood,et al.  The beginning of melting of fertile and depleted peridotite at 1.5 GPa , 1998 .

[210]  J. M. Rhodes,et al.  One atmosphere melting experiments on ilmenite basalt 12008 , 1979 .

[211]  James B. Thompson Composition space; an algebraic and geometric approach , 1982 .

[212]  B. W. Evans,et al.  The 15 June 1991 Eruption of Mount Pinatubo. I. Phase Equilibria and Pre-eruption P–T–fO2–fH2O Conditions of the Dacite Magma , 1999 .

[213]  T. Green,et al.  P-T Phase Relations of Silicic, Alkaline, Aluminous Mantle-Xenolith Glasses Under Anhydrous and C-O-H Fluid-saturated Conditions , 1997 .

[214]  D. Weill,et al.  An igneous plagioclase thermometer , 1970 .

[215]  M. Taylor,et al.  Visual and lidar observations of noctilucent clouds above Logan, Utah, at 41.7°N , 2002 .

[216]  John H. Jones,et al.  Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts , 1993 .

[217]  M. Perfit,et al.  Experimental constraints on the generation of FeTi basalts, andesites, and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W , 1989 .

[218]  C. Herzberg,et al.  Clinopyroxene geothermometry of spinel-lherzolites , 1976 .

[219]  C. Langmuir,et al.  An evaluation of major element heterogeneity in the mantle sources of basalts , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[220]  D. Elthon,et al.  High-pressure phase equilibria of a high-magnesia basalt and the genesis of primary oceanic basalts , 1984 .

[221]  J. Koepke,et al.  Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions , 2006 .

[222]  Mark S. Ghiorso,et al.  The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa , 2002 .

[223]  D. Lindstrom,et al.  Partitioning of Ni2+ between basaltic and synthetic melts and olivines—an experimental study , 1978 .

[224]  V. Benoit,et al.  Equilibrium state of diopside-bearing harzburgites from ophiolites: Geobarometric and geodynamic implications , 1984 .

[225]  K. P. Skjerlie The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa : Implications for melting in thickened continental crust and for subduction-zone processes , 2002 .

[226]  B. Wood The solubility of alumina in orthopyroxene coexisting with garnet , 1974 .

[227]  T. Grove,et al.  Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California , 1997 .

[228]  M. Kohn,et al.  Error propagation for barometers; 2, Application to rocks , 1991 .

[229]  A. Glazner Activities of olivine and plagioclase components in silicate melts and their application to geothermometry , 1984 .

[230]  A. Kilinc,et al.  Enrichment of SiO2 in rhyolites by fractional crystallization: An experimental study of peraluminous granitic rocks from the St. Francois Mountains, Missouri, USA , 1993 .

[231]  R. Price,et al.  Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content , 1994 .

[232]  C. Langmuir,et al.  Petrogenesis of basalt glasses from the Tamayo region , 1984 .

[233]  C. Condit,et al.  Cross section of a magma conduit system at the margin of the Colorado Plateau , 2003 .

[234]  R. L. Nielsen,et al.  Pyroxene-melt equilibria , 1979 .

[235]  R. Macdonald,et al.  Source and H2O content of high-MgO magmas in island arc settings : an experimental study of a primitive calc-alkaline basalt from St Vincent, Lesser Antilles arc. , 2002 .

[236]  M. Bizimis,et al.  Hawaiian mantle xenoliths and magmas: Composition and thermal character of the lithosphere , 2005 .

[237]  P. C. Hess,et al.  The last lavas erupted during the main phase of the Siberian flood volcanic province: results from experimental petrology , 2006 .

[238]  T. Sisson,et al.  Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism , 1993 .

[239]  N. Chatterjee,et al.  Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses , 2003 .

[240]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[241]  J. Anderson,et al.  Thermometers and Thermobarometers in Granitic Systems , 2008 .

[242]  K. Putirka Garnet + liquid equilibrium , 1998 .

[243]  F. Albarède How deep do common basaltic magmas form and differentiate , 1992 .

[244]  M. Schmidt,et al.  Experimental evidence of decompression melting during exhumation of subducted continental crust , 2006 .

[245]  J. Blundy,et al.  Petrologic Reconstruction of Magmatic System Variables and Processes , 2008 .

[246]  P. Ulmer,et al.  Piston-cylinder experiments on H2O undersaturated Fe-bearing systems: An experimental setup approaching fO₂ conditions of natural calc-alkaline magmas , 2005 .

[247]  T. Housh,et al.  Plagioclase-melt equilibria in hydrous systems. , 1991 .

[248]  T. Barth Additional data for the two-feldspar geothermometer , 1968 .

[249]  D. C. Presnall,et al.  Liquidus Phase Relations in the CaO–MgO–Al2O3–SiO2 System at 3.0 GPa: the Aluminous Pyroxene Thermal Divide and High-Pressure Fractionation of Picritic and Komatiitic Magmas , 1998 .

[250]  C. Lundstrom,et al.  Phase equilibrium experiments at 0.5 GPa and 1100-1300 °C on a basaltic andesite from Arenal volcano, Costa Rica , 2006 .

[251]  Kojiro Tsuruta,et al.  Melting study of an alkali basalt JB-1 up to 12.5 GPa: behavior of potassium in the deep mantle , 1998 .

[252]  D. Beaty,et al.  Classification, experimental petrology and possible volcanic histories of the Apollo 11 high-K basalts , 1980 .

[253]  T. Dunn,et al.  Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study , 1994 .

[254]  Y. Fei,et al.  High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts , 2004 .

[255]  T. Mccoy,et al.  Crystallization of the Zagami shergottite: an experimental study , 1999 .

[256]  I. Carmichael,et al.  Silica activity and Ptotal in igneous rocks , 1971 .

[257]  T. Shepherd,et al.  Glass inclusions and melt compositions of the Toba Tuffs, northern Sumatra , 1983 .

[258]  M. P. Ryan The Mechanics and Three‐Dimensional Internal Structure of Active Magmatic Systems: Kilauea Volcano, Hawaii , 1988 .

[259]  D. Clague,et al.  Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones , 1999 .

[260]  T. Grove,et al.  Harzburgite melting with and without H2O: Experimental data and predictive modeling , 2004 .

[261]  H. Traineau,et al.  Effects of f O2 and H2O on andesite phase relations between 2 and 4 kbar , 1999 .