Numerical computations of split Bregman method for fourth order total variation flow

The split Bregman framework for Osher-Sole-Vese (OSV) model and fourth order total variation flow are studied. We discretize the problem by piecewise constant function and compute $\nabla(-\Delta_{\mathrm{av}})^{-1}$ approximately and exactly. Furthermore, we provide a new shrinkage operator for Spohn's fourth order model. Numerical experiments are demonstrated for fourth order problems under periodic boundary condition.

[1]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[2]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[3]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[4]  Herbert Spohn,et al.  Surface dynamics below the roughening transition , 1993 .

[5]  Yohei Kashima A subdifferential formulation of fourth order singular diffusion equations , 2003 .

[6]  Sigurd B. Angenent,et al.  Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .

[7]  L. Evans,et al.  Motion of level sets by mean curvature IV , 1995 .

[8]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[9]  L. Grafakos Classical Fourier Analysis , 2010 .

[10]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[11]  Yoshikazu Giga,et al.  Surface Evolution Equations: A Level Set Approach , 2006 .

[12]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[13]  Salvador Moll,et al.  Total Variation Denoising in l1 Anisotropy , 2016, SIAM J. Imaging Sci..

[14]  A. Chambolle,et al.  Existence and Uniqueness for a Crystalline Mean Curvature Flow , 2015, 1508.03598.

[15]  Morton E. Gurtin,et al.  Multiphase thermomechanics with interfacial structure , 1990 .

[16]  Y. Giga,et al.  Anisotropic total variation flow of non-divergence type on a higher dimensional torus , 2013, 1305.5904.

[17]  Yoshikazu Giga,et al.  Very singular diffusion equations: second and fourth order problems , 2010 .

[18]  A. Chambolle,et al.  Existence and uniqueness for anisotropic and crystalline mean curvature flows , 2017, Journal of the American Mathematical Society.

[19]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[20]  Adam M. Oberman,et al.  Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation , 2011 .

[21]  Loukas Grafakos,et al.  Modern Fourier Analysis , 2008 .

[22]  Y. Kōmura,et al.  Nonlinear semi-groups in Hilbert space , 1967 .

[23]  Y. Giga,et al.  A level set crystalline mean curvature flow of surfaces , 2016, Advances in Differential Equations.

[24]  Yoshikazu Giga,et al.  FOURTH-ORDER TOTAL VARIATION FLOW WITH DIRICHLET CONDITION : CHARACTERIZATION OF EVOLUTION AND EXTINCTION TIME ESTIMATES , 2015 .

[25]  Yoshikazu Giga,et al.  Scale-Invariant Extinction Time Estimates for Some Singular Diffusion Equations , 2010 .

[26]  Robert V. Kohn,et al.  Numerical Analysis of a Steepest-Descent PDE Model for Surface Relaxation below the Roughening Temperature , 2010, SIAM J. Numer. Anal..

[27]  J. L. Webb OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .

[28]  Charles M. Elliott,et al.  Analysis of the TV regularization and $H^{-1}$ fidelity model for decomposing animage into cartoon plus texture , 2007 .

[29]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[30]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[31]  Hedy Attouch,et al.  The Rate of Convergence of Nesterov's Accelerated Forward-Backward Method is Actually Faster Than 1/k2 , 2015, SIAM J. Optim..

[32]  Y. Giga,et al.  Periodic total variation flow of non-divergence type in Rn , 2013, 1302.0618.

[33]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[34]  Y. Giga,et al.  A duality based approach to the minimizing total variation flow in the space $$H^{-s}$$H-s , 2017, Japan Journal of Industrial and Applied Mathematics.

[35]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[36]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[37]  Norbert Povz'ar On the self-similar solutions of the crystalline mean curvature flow in three dimensions , 2018, 1806.02482.

[38]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[39]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[40]  G. Grubb Distributions and Operators , 2008 .

[41]  M. Muszkieta,et al.  Two cases of squares evolving by anisotropic diffusion , 2013, Advances in Differential Equations.

[42]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[43]  Yohei Kashima Characterization of subdifferentials of a singular convex functional in Sobolev spaces of order minus one , 2011, 1104.3649.

[44]  Y. Giga,et al.  Approximation of General Facets by Regular Facets with Respect to Anisotropic Total Variation Energies and Its Application to Crystalline Mean Curvature Flow , 2017, 1702.05220.