Correlation between flash sintering and dielectric breakdown behavior in donor-doped barium titanate ceramics

[1]  Y. Pu,et al.  Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability , 2020 .

[2]  Y. Pu,et al.  A novel lead-free NaNbO3–Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability , 2020 .

[3]  Y. Pu,et al.  Strong non-volatile voltage control of magnetization and the magnetodielectric properties in polymer-based sandwich-structured composites , 2020 .

[4]  Y. Pu,et al.  Particle transport mode during flash sintering of sodium bismuth titanate ceramic , 2019, Ceramics International.

[5]  Y. Pu,et al.  Flash sintering of barium titanate , 2019, Ceramics International.

[6]  Michael J. Hoffmann,et al.  The role of point defects and defect gradients in flash sintering of perovskite oxides , 2019, Acta Materialia.

[7]  V. Sglavo,et al.  Flash sintering of ceramics , 2019, Journal of the European Ceramic Society.

[8]  V. Sglavo,et al.  Phenomenological understanding of flash sintering in MnCo2O4 , 2018, Journal of the European Ceramic Society.

[9]  V. Sglavo,et al.  Investigation of Electrochemical, Optical and Thermal Effects during Flash Sintering of 8YSZ , 2018, Materials.

[10]  Jian Luo,et al.  Two-step flash sintering of ZnO: Fast densification with suppressed grain growth , 2017 .

[11]  V. Sglavo,et al.  Photoemission during flash sintering: An interpretation based on thermal radiation , 2017 .

[12]  R. Raj,et al.  Flash sintering of highly insulating nanostructured phase‐pure BiFeO3 , 2017 .

[13]  V. Sglavo,et al.  Theoretical and phenomenological analogies between flash sintering and dielectric breakdown in α-alumina , 2016 .

[14]  V. Sglavo,et al.  Flash sintering of alumina: Effect of different operating conditions on densification , 2016 .

[15]  C. Randall,et al.  Flash sintering of potassium-niobate , 2015 .

[16]  Zhenhua Wang,et al.  Understanding the Flash Sintering of Rare-Earth-Doped Ceria for Solid Oxide Fuel Cell , 2015 .

[17]  E. Muccillo,et al.  Light emission during electric field-assisted sintering of electroceramics , 2015 .

[18]  R. Raj,et al.  Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity , 2014 .

[19]  V. Sglavo,et al.  Flash sintering as a nucleation phenomenon and a model thereof , 2014 .

[20]  E. Muccillo,et al.  Electric field-assisted flash sintering of tin dioxide , 2014 .

[21]  R. Raj,et al.  The Effect of Electric Field on Sintering and Electrical Conductivity of Titania , 2014 .

[22]  R. Raj,et al.  Influence of the Field and the Current Limit on Flash Sintering at Isothermal Furnace Temperatures , 2013 .

[23]  A. Mukherjee,et al.  Local field strengths during early stage field assisted sintering (FAST) of dielectric materials , 2012 .

[24]  R. Raj Joule heating during flash-sintering , 2012 .

[25]  Zhenhua Wang,et al.  A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current , 2012 .

[26]  M. Cologna,et al.  Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping , 2011 .

[27]  M. Cologna,et al.  Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications , 2011 .

[28]  M. Cologna,et al.  Flash‐Sintering of Cubic Yttria‐Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing , 2011 .

[29]  M. Cologna,et al.  Flash Sintering of Nanograin Zirconia in <5 s at 850°C , 2010 .

[30]  R. Raj,et al.  Enhanced Sintering Rate of Zirconia (3Y‐TZP) Through the Effect of a Weak dc Electric Field on Grain Growth , 2010 .

[31]  J. Groza,et al.  Surface effects in field-assisted sintering , 2001 .

[32]  R. H. Tredgold,et al.  Dielectric breakdown in barium titanate , 1962 .

[33]  J. Frenkel,et al.  On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors , 1938 .

[34]  A. Hippel Der Mechanismus des „elektrischen“ Durchschlages in festen Isolatoren. II , 1931 .

[35]  Y. Pu,et al.  High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics , 2020 .

[36]  Y. Pu,et al.  Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3-based relaxor ferroelectrics for pulse capacitor applications , 2020 .

[37]  S. Baltianski,et al.  The influence of doping on flash sintering conditions in SrTi1−xFexO3−δ , 2017 .

[38]  A. Hippel Der Mechanismus des „elektrischen“ Durchschlages in festen Isolatoren. I , 1931 .