Flag Numbers and FLAGTOOL

FLAGTOOL is a computer program for proving automatically theorems about the combinatorial structure of polytopes of dimensions at most 10. Its starting point is the known linear relations (equalities and inequalities) for flag number of polytopes. After describing the state of the art concerning such linear relations we describe various applications of FLAGTOOL and we conclude by indicating several directions for future research and automation. As an appendix we describe FLAGTOOL’s main tools and demonstrate one working session with the program.

[1]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[2]  Margaret M. Bayer,et al.  Face Numbers and Subdivisions of Convex Polytopes , 1994 .

[3]  Louis J. Billera,et al.  Neighborly cubical spheres and a cubical lower bound conjecture , 1997 .

[4]  P. McMullen The numbers of faces of simplicial polytopes , 1971 .

[5]  Richard Ehrenborg,et al.  The toric h-vectors of partially ordered sets , 2000 .

[6]  Gil Kalai,et al.  Extended Euler-Poincare Relations for Cell Complexes , 1990, Applied Geometry And Discrete Mathematics.

[7]  Richard Ehrenborg,et al.  Thec-2d-Index of Oriented Matroids , 1997, J. Comb. Theory, Ser. A.

[8]  David W. Barnette,et al.  The projection of the f-vectors of 4-polytopes onto the (E, S)-plane , 1974, Discret. Math..

[9]  Peter McMullen,et al.  Polytopes: Abstract, Convex and Computational , 1994 .

[10]  A. Bezdek,et al.  Facets with fewest vertices , 1990 .

[11]  Louis J. Billera,et al.  Linear Inequalities for Flags in Graded Partially Ordered Sets , 2000, J. Comb. Theory, Ser. A.

[12]  Peter McMullen,et al.  On simple polytopes , 1993 .

[13]  Andrew Klapper,et al.  A new index for polytopes , 1991, Discret. Comput. Geom..

[14]  Richard Ehrenborg,et al.  Monotonicity of the cd-index for polytopes , 2000 .

[15]  R. Blind,et al.  Convex polytopes without triangular faces , 1990 .

[16]  Gil Kalai The Diameter of Graphs of Convex Polytopes and f-Vector Theory , 1990, Applied Geometry And Discrete Mathematics.

[17]  Paul Seymour On the points-lines-planes conjecture , 1982 .

[18]  Lev A. Borisov,et al.  Mirror duality and string-theoretic Hodge numbers , 1995 .

[19]  A. G. Khovanskii,et al.  Hyperplane sections of polyhedra, toroidal manifolds, and discrete groups in Lobachevskii space , 1986 .

[20]  Tom C. Braden,et al.  Intersection homology of toric varieties and a conjecture of Kalai , 1997 .

[21]  B. Grünbaum Arrangements and Spreads , 1972 .

[22]  David Barnette Nonfacets for shellable spheres , 1980 .

[23]  Gábor Hetyei,et al.  Flag Vectors of Eulerian Partially Ordered Sets , 1999, European journal of combinatorics (Print).

[24]  Ron M. Adin,et al.  A new cubical h-vector , 1996, Discret. Math..

[25]  G. Ziegler Lectures on Polytopes , 1994 .

[26]  D. Barnette A proof of the lower bound conjecture for convex polytopes. , 1973 .

[27]  Richard P. Stanley,et al.  Subdivisions and local $h$-vectors , 1992 .

[28]  永田 雅宜,et al.  Commutative algebra and combinatorics , 1987 .

[29]  Gil Kalai,et al.  A new basis of polytopes , 1988, J. Comb. Theory, Ser. A.

[30]  Richard Ehrenborg,et al.  The cd-Index of Zonotopes and Arrangements , 1998 .

[31]  Gil Kalai,et al.  On low-dimensional faces that high-dimensional polytopes must have , 1990, Comb..

[32]  Margaret M. Bayer Equidecomposable and weakly neighborly polytopes , 1993 .

[33]  Margaret Bayer,et al.  The extended f-vectors of 4-polytopes , 1987, J. Comb. Theory, Ser. A.

[34]  Louis J. Billera,et al.  Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets , 1985 .

[35]  Günter M. Ziegler,et al.  Neighborly Cubical Polytopes , 2000, Discret. Comput. Geom..

[36]  Margaret M. Bayer,et al.  An Upper Bound Theorem for Rational Polytopes , 1998, J. Comb. Theory, Ser. A.

[37]  Richard P. Stanley,et al.  A Survey of Eulerian Posets , 1994 .

[38]  R. Stanley Flagf-vectors and thecd-index , 1994 .

[39]  B. Grünbaum Polytopes, graphs, and complexes , 1970 .

[40]  R. Stanley The number of faces of a simplicial convex polytope , 1980 .

[41]  Gil Kalai,et al.  Rigidity and the lower bound theorem 1 , 1987 .

[42]  Peter Kleinschmidt,et al.  Three Theorems, with Computer-Aided Proofs, on Three-Dimensional Faces and Quotients of Polytopes , 2000, Discret. Comput. Geom..

[43]  Carl W. Lee,et al.  A Proof of the Sufficiency of McMullen's Conditions for f-Vectors of Simplicial Convex Polytopes , 1981, J. Comb. Theory A.