Fractal surface reconstruction for modeling natural terrain

A surface reconstruction method is developed, based on fractal geometry, for modeling natural terrain. The method estimates dense surfaces from sparse data located in any configuration while preserving roughness. A redefinition of the temperature parameter in the stochastic regularization method is presented. It plays a critical role in controlling roughness as a function of the fractal dimension. The fractalness of surfaces reconstructed with the temperature parameter is evaluated qualitatively by applying a technique for fractal dimension estimation. As a result, it is possible to reconstruct rugged natural surfaces which preserve the original roughness from sparse data sensed by, for example, scanning laser rangefinders.<<ETX>>