The Demographics of Rocky Free-floating Planets and their Detectability by WFIRST

Planets are thought to form via accretion from a remnant disk of gas and solids around a newly formed star. During this process material in the disk either remains bound to the star as part of either a planet, a smaller celestial body, or makes up part of the interplanetary medium; falls into the star; or is ejected from the system. Herein we use dynamical models to probe the abundance and properties of ejected material during late-stage planet formation and estimate their contribution to the free-floating planet population. We present 300 N-body simulations of terrestrial planet formation around a solar-type star, with and without giant planets present, using a model that accounts for collisional fragmentation. In simulations with Jupiter and Saturn analogs, about one-third of the initial (~5 Mearth) disk mass is ejected, about half in planets more massive than Mercury but less than 0.3 Mearth, and the remainder in smaller bodies. Most ejections occur within 25 Myr, which is shorter than the timescale typically required for Earth-mass planets to grow (30-100 Myr). When giant planets are omitted from our simulations, almost no material is ejected within 200 Myr and only about 1% of the initial disk is ejected by 2 Gyr. We show that about 2.5 terrestrial-mass planets are ejected per star in the Galaxy. We predict that the space-borne microlensing search for free-floating planets from the Wide-Field Infra-Red Space Telescope (WFIRST) will discover up to 15 Mars-mass planets, but few free-floating Earth-mass planets.

[1]  John C B Papaloizou,et al.  Planet formation and migration , 2006 .

[2]  E. Kerins,et al.  Predictions for the Detection and Characterization of a Population of Free-floating Planets with K2 Campaign 9 , 2016, 1605.01059.

[3]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[4]  C. Henderson,et al.  ON THE FEASIBILITY OF CHARACTERIZING FREE-FLOATING PLANETS WITH CURRENT AND FUTURE SPACE-BASED MICROLENSING SURVEYS , 2016, 1603.05249.

[5]  P. Cassen,et al.  The effects of nebula surface density profile and giant‐planet eccentricities on planetary accretion in the inner solar system , 2002 .

[6]  Jack J. Lissauer,et al.  Timescales for planetary accretion and the structure of the protoplanetary disk , 1986 .

[7]  A. Kraus,et al.  Distances, Luminosities, and Temperatures of the Coldest Known Substellar Objects , 2013, Science.

[8]  D. Broguiere,et al.  THE 2014 ALMA LONG BASELINE CAMPAIGN: FIRST RESULTS FROM HIGH ANGULAR RESOLUTION OBSERVATIONS TOWARD THE HL TAU REGION , 2015 .

[9]  Sean N. Raymond,et al.  PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS , 2010, 1001.3409.

[10]  X. Delfosse,et al.  CFBDSIR2149-0403: a 4-7 Jupiter-mass free-floating planet in the young moving group AB Doradus ? ⋆ , 2012, 1210.0305.

[11]  M. Osorio,et al.  Candidate free-floating super-Jupiters in the young $\sigma$ Orionis open cluster , 2009, 0909.0802.

[12]  J. Rowe,et al.  THE FREQUENCY OF GIANT IMPACTS ON EARTH-LIKE WORLDS , 2015, 1511.03663.

[13]  Anders Johansen,et al.  Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities , 2011, 1111.0221.

[14]  N. Zakamska,et al.  Observational biases in determining extrasolar planet eccentricities in single‐planet systems , 2010, 1008.4152.

[15]  A. Johansen,et al.  Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion , 2015, Science Advances.

[16]  John E. Chambers,et al.  Late-stage planetary accretion including hit-and-run collisions and fragmentation , 2013 .

[17]  Harold F. Levison,et al.  The Role of Giant Planets in Terrestrial Planet Formation , 2000 .

[18]  M. R. Haas,et al.  A sub-Mercury-sized exoplanet , 2013, Nature.

[19]  Harold F. Levison,et al.  Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture , 2007, 0706.1713.

[20]  Howard Isaacson,et al.  An Earth-Sized Planet in the Habitable Zone of a Cool Star , 2014, Science.

[21]  S. Raymond,et al.  No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super-Earths , 2014, 1401.3743.

[22]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[23]  Giant planet migration through the action of disk torques and planet-planet scattering , 2005, astro-ph/0505234.

[24]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[25]  A. Morbidelli,et al.  Terrestrial planet formation with strong dynamical friction , 2006 .

[26]  Francesco Marzari,et al.  Eccentric Extrasolar Planets: The Jumping Jupiter Model , 2002 .

[27]  S. Raymond,et al.  The Grand Tack model: a critical review , 2014, Proceedings of the International Astronomical Union.

[28]  Making other earths: dynamical simulations of terrestrial planet formation and water delivery , 2003, astro-ph/0308159.

[29]  C. Moutou,et al.  The HARPS search for southern extra-solar planets , 2004, Astronomy & Astrophysics.

[30]  C. H. Ling,et al.  MOA-2011-BLG-262Lb: A SUB-EARTH-MASS MOON ORBITING A GAS GIANT PRIMARY OR A HIGH VELOCITY PLANETARY SYSTEM IN THE GALACTIC BULGE , 2013, 1312.3951.

[31]  R. P. Butler,et al.  THE ANGLO-AUSTRALIAN PLANET SEARCH XXIV: THE FREQUENCY OF JUPITER ANALOGS , 2016, 1601.05465.

[32]  D. Lin,et al.  Free-floating planets from core accretion theory: microlensing predictions , 2016, 1605.08556.

[33]  ON THE FATE OF UNSTABLE CIRCUMBINARY PLANETS: TATOOINE’S CLOSE ENCOUNTERS WITH A DEATH STAR , 2015, 1511.03274.

[34]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[35]  Nuno C. Santos,et al.  Extrasolar Planets: Statistical properties of exoplanets , 2007 .

[36]  J. Stadel,et al.  Formation and Accretion History of Terrestrial Planets from Runaway Growth through to Late Time: Implications for Orbital Eccentricity , 2008, 0806.1689.

[37]  Formation of terrestrial planets in a dissipating gas disk , 2003 .

[38]  E. Kokubo,et al.  Formation of Protoplanets from Planetesimals in the Solar Nebula , 2000 .

[39]  John E. Chambers,et al.  Terrestrial Planet Formation in the α Centauri System , 2002 .

[40]  K. Ulaczyk,et al.  Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey , 2015, 1512.09142.

[41]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[42]  J. Chambers Making More Terrestrial Planets , 2001 .

[43]  J. Stadel,et al.  From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets , 2010, 1007.0579.

[44]  The Frozen Earth: Binary Scattering Events and the Fate of the Solar System , 2000 .

[45]  High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics , 2005, astro-ph/0510284.

[46]  D. Bennett,et al.  CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX? , 2014, 1412.1546.

[47]  J. Lissauer,et al.  Terrestrial Planet Formation in Binary Star Systems , 2007, 0705.3444.

[48]  Accretion of terrestrial planets from oligarchs in a turbulent disk , 2006, astro-ph/0612619.

[49]  Scott Gaudi,et al.  SYNTHESIZING EXOPLANET DEMOGRAPHICS FROM RADIAL VELOCITY AND MICROLENSING SURVEYS. II. THE FREQUENCY OF PLANETS ORBITING M DWARFS , 2014, 1404.7500.

[50]  F. Ciesla,et al.  Dynamics of the terrestrial planets from a large number of N-body simulations , 2014 .

[51]  A. Moro-martin,et al.  Debris disks as signposts of terrestrial planet formation , 2011, 1104.0007.

[52]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[53]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS , 2011, 1106.6084.

[54]  D. Apai,et al.  VOLATILE DELIVERY TO PLANETS FROM WATER-RICH PLANETESIMALS AROUND LOW-MASS STARS , 2015, 1502.07412.

[55]  J. Lunine,et al.  Terrestrial Planet Formation in Disks with Varying Surface Density Profiles , 2005, astro-ph/0507004.

[56]  B. Scott Gaudi,et al.  SYNTHESIZING EXOPLANET DEMOGRAPHICS: A SINGLE POPULATION OF LONG-PERIOD PLANETARY COMPANIONS TO M DWARFS CONSISTENT WITH MICROLENSING, RADIAL VELOCITY, AND DIRECT IMAGING SURVEYS , 2015, 1508.04434.

[57]  E. Kokubo,et al.  Formation of Terrestrial Planets from Protoplanets. I. Statistics of Basic Dynamical Properties , 2006 .

[58]  John C. Moriarty,et al.  THE KEPLER DICHOTOMY IN PLANETARY DISKS: LINKING KEPLER OBSERVABLES TO SIMULATIONS OF LATE-STAGE PLANET FORMATION , 2015, 1512.03445.

[59]  Eric B. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[60]  Francesco Marzari,et al.  Gravitational scattering as a possible origin for giant planets at small stellar distances , 1996, Nature.

[61]  R. J. Wainscoat,et al.  THE EXTREMELY RED, YOUNG L DWARF PSO J318.5338−22.8603: A FREE-FLOATING PLANETARY-MASS ANALOG TO DIRECTLY IMAGED YOUNG GAS-GIANT PLANETS , 2013, 1310.0457.

[62]  K. Kratter,et al.  Planet Scattering Around Binaries: Ejections, Not Collisions , 2016, 1604.03121.

[63]  Jack J. Lissauer,et al.  THE EFFECT OF PLANETS BEYOND THE ICE LINE ON THE ACCRETION OF VOLATILES BY HABITABLE-ZONE ROCKY PLANETS , 2014, 1403.5084.

[64]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[65]  John Asher Johnson,et al.  THE FREQUENCY OF HOT JUPITERS ORBITING NEARBY SOLAR-TYPE STARS , 2012, 1205.2273.

[66]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[67]  G. Wetherill,et al.  Provenance of the terrestrial planets. , 1994, Geochimica et cosmochimica acta.

[68]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[69]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[70]  Z. Leinhardt,et al.  Planetesimals to Protoplanets. I. Effect of Fragmentation on Terrestrial Planet Formation , 2005 .

[71]  B. Hansen,et al.  TESTING IN SITU ASSEMBLY WITH THE KEPLER PLANET CANDIDATE SAMPLE , 2013, 1301.7431.

[72]  J. Silk On the fragmentation of cosmic gas clouds. I. The formation of galaxies and the first generation of stars. , 1977 .

[73]  A. Dutrey,et al.  A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties , 2011 .

[74]  Austin,et al.  A Decreased Probability of Habitable Planet Formation around Low-Mass Stars , 2007, 0707.1711.

[75]  Philip W. Lucas,et al.  A population of very young brown dwarfs and free‐floating planets in Orion , 2000 .

[76]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[77]  Jonathan P. Williams,et al.  A Herschel PACS survey of the dust and gas in Upper Scorpius disks , 2013, 1308.6020.

[78]  K. Rice,et al.  Protostars and Planets V , 2005 .

[79]  Avi M. Mandell,et al.  Exotic Earths: Forming Habitable Worlds with Giant Planet Migration , 2006, Science.

[80]  F. Adams,et al.  Cross-sections for planetary systems interacting with passing stars and binaries , 2015, 1501.00911.

[81]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. II. THE DIVERSITY OF IMPACT OUTCOMES DURING THE END STAGE OF PLANET FORMATION , 2012 .

[82]  S. Raymond,et al.  Planet–planet scattering alone cannot explain the free-floating planet population , 2012, 1201.2175.

[83]  European Southern Observatory,et al.  FIRST RESULTS FROM HIGH ANGULAR RESOLUTION ALMA OBSERVATIO NS TOWARD THE HL TAU REGION , 2015, 1503.02649.

[84]  N. Kaib,et al.  Building the terrestrial planets: Constrained accretion in the inner Solar System , 2009, 0905.3750.

[85]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[86]  Debris disks as signposts of terrestrial planet formation , 2011, 1104.0007.

[87]  Erik Asphaug,et al.  Hit-and-run planetary collisions , 2006, Nature.

[88]  J. B. Marquette,et al.  ExELS: an exoplanet legacy science proposal for the ESA Euclid mission – I. Cold exoplanets , 2012, 1206.5296.

[89]  John E. Chambers,et al.  The Stability of Multi-Planet Systems , 1996 .

[90]  S. Raymond The Search for Other Earths: Limits on the Giant Planet Orbits That Allow Habitable Terrestrial Planets to Form , 2006, astro-ph/0605136.

[91]  J. Lissauer,et al.  Terrestrial planet formation surrounding close binary stars , 2006, astro-ph/0607222.

[92]  Jack J. Lissauer,et al.  Models of Jupiter's growth incorporating thermal and hydrodynamic constraints , 2008, 0810.5186.

[93]  Alessandro Morbidelli,et al.  Building Terrestrial Planets , 2012, 1208.4694.

[94]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[95]  Y. Alibert,et al.  Theoretical models of planetary system formation. II. Post-formation evolution , 2015, 1502.04260.