CAPD: : DynSys: a flexible C++ toolbox for rigorous numerical analysis of dynamical systems

We present the CAPD::DynSys library for rigorous numerical analysis of dynamical systems. The basic interface is described together with several interesting case studies illustrating how it can be used for computer-assisted proofs in dynamics of ODEs.

[1]  Jacek Cyranka,et al.  Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model , 2017, SIAM J. Appl. Dyn. Syst..

[2]  Andreas Griewank,et al.  Introduction to Automatic Differentiation , 2003 .

[3]  V. Kaloshin,et al.  Destruction of invariant curves in the restricted circular planar three-body problem by using comparison of action , 2011 .

[4]  D. Wilczak Chaos in the Kuramoto–Sivashinsky equations—a computer-assisted proof , 2003 .

[5]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[6]  D. Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three-Body Problem – A Computer Assisted Proof , 2002, math/0201278.

[7]  Martin Berz,et al.  New Methods for High-Dimensional Verified Quadrature , 1999, Reliab. Comput..

[8]  T. Kapela,et al.  Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems , 2011, 1105.3235.

[9]  J. Kovalevsky,et al.  Lectures in celestial mechanics , 1989 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  P. Zgliczynski,et al.  The existence of simple choreographies for the N-body problem—a computer-assisted proof , 2003, math/0304404.

[12]  K. Mischaikow,et al.  Chaos in the Lorenz Equations: A Computer Assisted Proof Part III: Classical Parameter Values , 1995, math/9501230.

[13]  Mitsuhiro Nakao,et al.  A numerical verification method for the existence of weak solutions for nonlinear boundary value problems , 1992 .

[14]  Warwick Tucker,et al.  Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .

[15]  T. Miyaji,et al.  Existence proof of unimodal solutions of the Proudman–Johnson equation via interval analysis , 2019, Japan Journal of Industrial and Applied Mathematics.

[16]  W. Tucker,et al.  Rigorous integration of smooth vector fields around spiral saddles with an application to the cubic Chua's attractor , 2019, Journal of Differential Equations.

[17]  D Michelson,et al.  Steady solutions of the Kuramoto-Sivashinsky equation , 1986 .

[18]  R. Barrio,et al.  Distribution of stable islands within chaotic areas in the non-hyperbolic and hyperbolic regimes in the Hénon–Heiles system , 2020, Nonlinear Dynamics.

[19]  Daniel Wilczak Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system , 2009 .

[20]  P. Zgliczynski Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .

[21]  H. Kokubu,et al.  Rigorous verification of cocoon bifurcations in the Michelson system , 2007 .

[22]  G. Gronchi,et al.  On the stability of periodic N-body motions with the symmetry of Platonic polyhedra , 2018, Nonlinearity.

[23]  Zbigniew Galias,et al.  Validated Study of the Existence of Short Cycles for Chaotic Systems Using Symbolic Dynamics and Interval Tools , 2011, Int. J. Bifurc. Chaos.

[24]  T. Miyaji,et al.  A computer-assisted proof of existence of a periodic solution , 2014 .

[25]  Roberto Barrio,et al.  Computer-assisted proof of skeletons of periodic orbits , 2012, Comput. Phys. Commun..

[26]  N. Nedialkov,et al.  Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .

[27]  Radu Grosu,et al.  Lagrangian Reachabililty , 2017, CAV.

[28]  Zbigniew Galias,et al.  Rigorous study of short periodic orbits for the Lorenz system , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[29]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[30]  Johannes Willkomm,et al.  Introduction to Automatic Differentiation , 2009 .

[31]  M. Capiński,et al.  Computer assisted proofs of two-dimensional attracting invariant tori for ODEs , 2020, Discrete & Continuous Dynamical Systems - A.

[32]  Z. Galias,et al.  Computer assisted proof of chaos in the Lorenz equations , 1998 .

[33]  M. Capiński,et al.  Beyond the Melnikov method II: Multidimensional setting , 2018, Journal of Differential Equations.

[34]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[35]  Daniel Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three Body Problem. Part II , 2006 .

[36]  D. Wilczak,et al.  Cr-Lohner algorithm , 2011 .

[37]  Daniel Wilczak,et al.  Computer Assisted Proof of the Existence of Homoclinic Tangency for the Hénon Map and for the Forced Damped Pendulum , 2009, SIAM J. Appl. Dyn. Syst..

[38]  Daniel Wilczak,et al.  An implicit algorithm for validated enclosures of the solutions to variational equations for ODEs , 2015, Appl. Math. Comput..

[39]  Roberto Barrio,et al.  Systematic Computer-Assisted Proof of Branches of Stable Elliptic Periodic Orbits and Surrounding Invariant Tori , 2017, SIAM J. Appl. Dyn. Syst..

[40]  Marcin Zelawski,et al.  Rigorous Numerical Approach to Isolation in Dynamical Systems on the Example of the Kuramoto-Sivashinsky Equation , 1999, Reliab. Comput..

[41]  Daniel Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three Body Problem. Part II , 2004 .

[42]  Nedialko S. Nedialkov,et al.  An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1999, Reliab. Comput..

[43]  M. Capiński,et al.  Beyond the Melnikov method: a computer assisted approach , 2016, 1603.07131.

[44]  Lyudmila Mihaylova,et al.  Guaranteed computation of robot trajectories , 2017, Robotics Auton. Syst..

[45]  O. Rössler An equation for continuous chaos , 1976 .

[46]  M. Capiński,et al.  Arnold Diffusion, Quantitative Estimates, and Stochastic Behavior in the Three‐Body Problem , 2018, Communications on Pure and Applied Mathematics.

[47]  Piotr Zgliczynski,et al.  C1 Lohner Algorithm , 2002, Found. Comput. Math..

[48]  A. Neumaier Interval methods for systems of equations , 1990 .

[49]  Maciej J. Capinski,et al.  Existence of a Center Manifold in a Practical Domain around L1 in the Restricted Three-Body Problem , 2011, SIAM J. Appl. Dyn. Syst..

[50]  Marian Mrozek,et al.  CAPD: : RedHom v2 - Homology Software Based on Reduction Algorithms , 2014, ICMS.

[51]  Davide Bresolin,et al.  A computable and compositional semantics for hybrid automata , 2020, HSCC.

[52]  Tomasz Kapela,et al.  A Lohner-type algorithm for control systems and ordinary differential inclusions , 2007, 0712.0910.

[53]  W. Troy The existence of steady solutions of the Kuramoto-Sivashinsky equation , 1989 .

[54]  D. Wilczak,et al.  A geometric method for infinite-dimensional chaos: Symbolic dynamics for the Kuramoto-Sivashinsky PDE on the line , 2020, Journal of Differential Equations.

[55]  Gianni Arioli,et al.  Symbolic Dynamics for the Hénon–Heiles Hamiltonian on the Critical Level , 2001 .

[56]  Andreas Rauh,et al.  A Novel Interval Arithmetic Approach for Solving Differential-Algebraic Equations with ValEncIA-IVP , 2009, Int. J. Appl. Math. Comput. Sci..

[57]  Kaname Matsue,et al.  Rigorous numerics of finite-time singularities in dynamical systems - methodology and applications , 2017, 1711.01911.

[58]  C. Simó,et al.  Computer assisted proofs for nonsymmetric planar choreographies and for stability of the Eight , 2007 .

[59]  Konstantin Mischaikow,et al.  Chaos in the Lorenz equations: A computer assisted proof. Part II: Details , 1998, Math. Comput..

[60]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[61]  Marian Mrozek,et al.  Set arithmetic and the enclosing problem in dynamics , 2000 .

[62]  Daniel Wilczak,et al.  Validated numerics for period-tupling and touch-and-go bifurcations of symmetric periodic orbits in reversible systems , 2019, Commun. Nonlinear Sci. Numer. Simul..

[63]  Daniel Wilczak,et al.  Period Doubling in the Rössler System—A Computer Assisted Proof , 2007, Found. Comput. Math..

[64]  Maciej J. Capinski,et al.  Computer Assisted Existence Proofs of Lyapunov Orbits at L2 and Transversal Intersections of Invariant Manifolds in the Jupiter-Sun PCR3BP , 2012, SIAM J. Appl. Dyn. Syst..

[65]  Daniel Wilczak The Existence of Shilnikov Homoclinic Orbits in the Michelson System: A Computer Assisted Proof , 2006, Found. Comput. Math..

[66]  O. Rössler An equation for hyperchaos , 1979 .

[67]  A. Wasieczko,et al.  Geometric Proof of Strong Stable/Unstable Manifolds, with Application to the Restricted Three Body Problem , 2014, 1401.3015.

[68]  Daniel Wilczak,et al.  Uniformly Hyperbolic Attractor of the Smale-Williams Type for a Poincaré Map in the Kuznetsov System , 2010, SIAM J. Appl. Dyn. Syst..

[69]  Lyudmila Mihaylova,et al.  Reliable non-linear state estimation involving time uncertainties , 2018, Autom..

[70]  P. Pilarczyk COMPUTER ASSISTED METHOD FOR PROVING EXISTENCE OF PERIODIC ORBITS , 1999 .

[71]  Konstantin Mischaikow,et al.  A study of rigorous ODE integrators for multi-scale set-oriented computations , 2016 .