Concerning axiomatizability of the quasivariety generated by a finite Heyting or topological Boolean algebra
暂无分享,去创建一个
[1] J. Łoś,et al. Remarks on sentential logics , 1958 .
[2] R. Wójcicki. Matrix approach in methodology of sentential calculi , 1973 .
[3] Wolfgang Rautenberg,et al. 2-Element matrices , 1981 .
[4] R. Goldblatt. Metamathematics of modal logic , 1974, Bulletin of the Australian Mathematical Society.
[5] A. Troelstra. On Intermediate Propositional Logics , 1965 .
[6] K. A. Baker,et al. Finite equational bases for finite algebras in a congruence-distributive equational class* , 1977 .
[7] G. Grätzer,et al. A Note on the Implicational Class Generated by a Class of Structures , 1973, Canadian Mathematical Bulletin.
[8] R. Sikorski,et al. The mathematics of metamathematics , 1963 .
[9] A. S. Troelstra,et al. On the connection of partially ordered sets with some pseudo-Boolean algebras , 1966 .
[10] V. P. Belkin. Quasiidentities of finite rings and lattices , 1978 .