Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part I: Analysis

In this work, we analyze a one-dimensional steady-state Poisson–Nernst–Planck type model for ionic flow through a membrane channel including ionic interactions modeled from the Density Functional Theory in a simple setting: Two oppositely charged ion species are involved with electroneutrality boundary conditions and with zero permanent charge, and only the hard sphere component of the excess (beyond the ideal) electrochemical potential is included. The model can be viewed as a singularly perturbed integro-differential system with a parameter resulting from a dimensionless scaling of the problem as the singular parameter. Our analysis is a combination of geometric singular perturbation theory and functional analysis. The existence of a solution of the model problem for small ion sizes is established and, treating the sizes as small parameters, we also derive an approximation of the I–V (current–voltage) relation. For this relatively simple situation, it is found that the ion size effect on the I–V relation can go either way—enhance or reduce the current. More precisely, there is a critical potential value Vc so that, if V > Vc, then the ion size enhances the current; if V < Vc, it reduces the current. There is another critical potential value Vc so that, if V > Vc, the current is increasing with respect to λ =  r2/r1 where r1 and r2 are, respectively, the radii of the positively and negatively charged ions; if V < Vc, the current is decreasing in λ. To our knowledge, the existence of these two critical values for the potential was not previously identified.

[1]  R. Evans The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids , 1979 .

[2]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[3]  Bob Eisenberg,et al.  Proteins, channels and crowded ions. , 2002, Biophysical chemistry.

[4]  Lawrence F. Shampine,et al.  A BVP solver based on residual control and the Maltab PSE , 2001, TOMS.

[5]  W. Im,et al.  Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. , 2002, Journal of molecular biology.

[6]  Jerome Percus,et al.  Equilibrium state of a classical fluid of hard rods in an external field , 1976 .

[7]  Dirk Gillespie,et al.  Density functional theory of charged, hard-sphere fluids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  B. Nadler,et al.  Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Robert S. Eisenberg,et al.  Crowded Charge in Biological Ion Channels , 2003 .

[10]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[11]  Abraham Nitzan,et al.  Comparison of Dynamic Lattice Monte Carlo Simulations and the Dielectric Self-Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels , 2004 .

[12]  Benoît Roux,et al.  Ion selectivity in potassium channels. , 2006, Biophysical chemistry.

[13]  Jelliffe. The Fitness of Environment. An Inquiry Into the Biological Significance of the Properties of Matter , 1913 .

[14]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[15]  Hartmut Löwen,et al.  Density functional theory for a model colloid-polymer mixture: bulk fluid phases , 2002 .

[16]  Benoît Roux,et al.  Theory of Transport in Ion Channels , 2007 .

[17]  Amit Singer,et al.  A Poisson--Nernst--Planck Model for Biological Ion Channels---An Asymptotic Analysis in a Three-Dimensional Narrow Funnel , 2009, SIAM J. Appl. Math..

[18]  Rob D. Coalson,et al.  Discrete-state model of coupled ion permeation and fast gating in ClC chloride channels , 2008 .

[19]  M. Kurnikova,et al.  Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels , 2005, IEEE Transactions on NanoBioscience.

[20]  Weishi Liu,et al.  Asymptotic Expansions of I-V Relations via a Poisson-Nernst-Planck System , 2008, SIAM J. Appl. Dyn. Syst..

[21]  P. Tarazona,et al.  Free Energy Density Functional from 0D Cavities , 1999 .

[22]  YunKyong Hyon,et al.  A New Poisson-Nernst-Planck Equation (PNP-FS-IF) for Charge Inversion Near Walls , 2011 .

[23]  Rosenfeld,et al.  Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. , 1989, Physical review letters.

[24]  Nader Masmoudi,et al.  Diffusion Limit of a Semiconductor Boltzmann-Poisson System , 2007, SIAM J. Math. Anal..

[25]  Johann Fischer,et al.  Relationship between free energy density functional, Born–Green–Yvon, and potential distribution approaches for inhomogeneous fluids , 1988 .

[26]  X. Tu,et al.  Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part II: Numerics , 2012 .

[27]  Bob Eisenberg,et al.  Living Transistors: a Physicist's View of Ion Channels , 2008 .

[28]  D H Jones,et al.  Atomic biology , 2005, Heredity.

[29]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  YunKyong Hyon,et al.  A mathematical model for the hard sphere repulsion in ionic solutions , 2011 .

[31]  Robert S. Eisenberg,et al.  Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .

[32]  I. Rubinstein,et al.  Multiple steady states in one-dimensional electrodiffusion with local electroneutrality , 1987 .

[33]  Herbert Steinrück,et al.  Asymptotic Analysis of the Current-Voltage Curve of a pnpn Semiconductor Device , 1989 .

[34]  M. Saraniti,et al.  A Poisson P3M Force Field Scheme for Particle-Based Simulations of Ionic Liquids , 2004 .

[35]  R. Eisenberg,et al.  From Structure to Function in Open Ionic Channels , 1999, The Journal of Membrane Biology.

[36]  Martin Burger,et al.  Inverse Problems Related to Ion Channel Selectivity , 2007, SIAM J. Appl. Math..

[37]  Robert S. Eisenberg,et al.  Physical descriptions of experimental selectivity measurements in ion channels , 2002, European Biophysics Journal.

[38]  Weishi Liu,et al.  Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..

[39]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[40]  B. Eisenberg,et al.  Ion Channels as Devices , 2003, Bio-, Micro-, and Nanosystems (IEEE Cat. No.03EX733).

[41]  J Norbury,et al.  Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels , 2008, European Journal of Applied Mathematics.

[42]  Dirk Gillespie,et al.  (De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the calcium release channel. , 2005, The journal of physical chemistry. B.

[43]  Joseph W. Jerome,et al.  A finite element approximation theory for the drift diffusion semiconductor model , 1991 .

[44]  P. M. Biesheuvel,et al.  Counterion volume effects in mixed electrical double layers. , 2007, Journal of colloid and interface science.

[45]  Christopher K. R. T. Jones,et al.  Invariant manifolds and singularly perturbed boundary value problems , 1994 .

[46]  R. S. Eisenberg,et al.  Channels as enzymes , 1990, The Journal of Membrane Biology.

[47]  Bob Eisenberg,et al.  Monte Carlo simulations of ion selectivity in a biological Na channel: Charge–space competition , 2002 .

[48]  J. Chazalviel Coulomb Screening by Mobile Charges , 1999 .

[49]  Benoit Roux,et al.  Importance of Hydration and Dynamics on the Selectivity of the KcsA and NaK Channels , 2007, The Journal of general physiology.

[50]  Y. Rosenfeld,et al.  From zero-dimension cavities to free-energy functionals for hard disks and hard spheres , 1997 .

[51]  M. Tuckerman,et al.  IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .

[52]  Dirk Gillespie,et al.  Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Boaz Nadler,et al.  Ionic Diffusion Through Protein Channels: From molecular description to continuum equations , 2003 .

[54]  Y. Rosenfeld,et al.  Free energy model for inhomogeneous fluid mixtures: Yukawa‐charged hard spheres, general interactions, and plasmas , 1993 .

[55]  R. Eisenberg,et al.  Modified Donnan potentials for ion transport through biological ion channels. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[57]  Umberto Ravaioli,et al.  BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation , 2005 .

[58]  D. Gillespie,et al.  Reinterpreting the anomalous mole fraction effect: the ryanodine receptor case study. , 2009, Biophysical journal.

[59]  D. Gillespie Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. , 2008, Biophysical journal.

[60]  Weishi Liu,et al.  One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species , 2009 .

[61]  W. Im,et al.  Theoretical and computational models of biological ion channels , 2004, Quarterly Reviews of Biophysics.

[62]  M. S. Mock,et al.  AN EXAMPLE OF NONUNIQUENESS OF STATIONARY SOLUTIONS IN SEMICONDUCTOR DEVICE MODELS , 1982 .

[63]  Joseph W. Jerome,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Mathematical Study , 1997, SIAM J. Appl. Math..

[64]  D. Gillespie,et al.  Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study. , 2008, Biophysical journal.

[65]  M. Kurnikova,et al.  Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.

[66]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[67]  R. Eisenberg,et al.  Charges, currents, and potentials in ionic channels of one conformation. , 1993, Biophysical journal.

[68]  Robert S. Eisenberg,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..

[69]  R. Eisenberg Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.

[70]  YunKyong Hyon,et al.  Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. , 2010, The Journal of chemical physics.

[71]  W. Im,et al.  Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. , 2004, Biophysical journal.

[72]  Roland Roth,et al.  Fundamental measure theory for hard-sphere mixtures: a review , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[73]  Benoît Roux,et al.  Theoretical studies of activated processes in biological ion channels , 1998 .

[74]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[75]  Herbert Steinrück,et al.  A bifurcation analysis of the one-dimensional steady-state semiconductor device equations , 1989 .

[76]  Dirk Gillespie,et al.  An efficient algorithm for classical density functional theory in three dimensions: ionic solutions. , 2009, The Journal of chemical physics.

[77]  Weishi Liu,et al.  Geometric Singular Perturbation Approach to Steady-State Poisson--Nernst--Planck Systems , 2005, SIAM J. Appl. Math..

[78]  Jerome Percus,et al.  Model grand potential for a nonuniform classical fluid , 1981 .

[79]  Bixiang Wang,et al.  Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels , 2009, 0902.4290.

[80]  R. Eisenberg,et al.  Energetic Variational Analysis EnVarA of Ions in Calcium and Sodium Channels , 2010 .

[81]  Shin-Ho Chung,et al.  Proceedings of the Australian Physiological and Pharmacological Society Symposium: Ion Channels PREDICTING CHANNEL FUNCTION FROM CHANNEL STRUCTURE USING BROWNIAN DYNAMICS SIMULATIONS , 2001, Clinical and experimental pharmacology & physiology.

[82]  B. Roux,et al.  Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands , 2004, Nature.

[83]  M. Saraniti,et al.  The Simulation of Ionic Charge Transport in Biological Ion Channels: An Introduction to Numerical Methods , 2006 .

[84]  Robert S. Eisenberg,et al.  Ion flow through narrow membrane channels: part II , 1992 .

[85]  Uwe Hollerbach,et al.  Dielectric boundary force and its crucial role in gramicidin. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Alberto Robledo,et al.  On the relationship between the density functional formalism and the potential distribution theory for nonuniform fluids , 1981 .

[87]  Robert S. Eisenberg,et al.  Two- and Three-Dimensional Poisson–Nernst–Planck Simulations of Current Flow Through Gramicidin A , 2002, J. Sci. Comput..