NUMERICAL EFFECTS IN A FINITE DIFFERENCE LATTICE BOLTZMANN MODEL FOR LIQUID-VAPOUR SYSTEMS

A two-dimensional finite difference Lattice Boltzmann model for liquid-vapour systems is introduced. Phase separation is achieved using the dimensionless van der Waals equation of state. A force term is added to account for the surface tension. Flux limiters and TVD schemes are used to improve the accuracy of this model.

[1]  Daniel H. Rothman,et al.  Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics , 1997 .

[2]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[3]  Hirotada Ohashi,et al.  LATTICE-BOLTZMANN SIMULATION OF TWO-PHASE FLUID FLOWS , 1998 .

[4]  Victor Sofonea,et al.  Viscosity of finite difference lattice Boltzmann models , 2003 .

[5]  Alexander J. Wagner The Origin of Spurious Velocities in Lattice Boltzmann , 2003 .

[6]  B. Bru Anders Hald, "A History of Mathematical Statistics from 1750 to 1930", New-York-Chicheste-Weinhei-Brisban-Singapor-Toronto, John Willey & Sons, Inc., 1998 , 2005 .

[7]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[8]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[9]  R. LeVeque Numerical methods for conservation laws , 1990 .

[10]  Hirotada Ohashi,et al.  Lattice Boltzmann Simulation of Multiphase Fluid Flows through the Total Variation Diminishing with Artificial Compression Scheme , 2000 .

[11]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[12]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[13]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[14]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .