On a new class of skewed Birnbaum-Saunders models

Scale mixtures of Birnbaum–Saunders (SBS) distributions are attractive models in lifetime analysis. These models are based on scale mixture of normal (SMN) distributions and provide flexible heavy-tailed distributions. In this article, we propose a skewed version of SBS distributions and we establish some of its probabilistic and inferential properties. We then discuss the maximum likelihood estimation of the model parameters. An illustration of the methodology is provided, using real data.

[1]  Muhammad Aslam,et al.  Capability indices for Birnbaum–Saunders processes applied to electronic and food industries , 2014 .

[2]  Manuel Galea,et al.  Diagnostics in Birnbaum-Saunders accelerated life models with an application to fatigue data , 2014 .

[3]  Víctor Leiva,et al.  Birnbaum–Saunders statistical modelling: a new approach , 2014 .

[4]  Flávio Augusto Ziegelmann,et al.  A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data , 2013, Stochastic Environmental Research and Risk Assessment.

[5]  Narayanaswamy Balakrishnan,et al.  Shape and change point analyses of the Birnbaum-Saunders-t hazard rate and associated estimation , 2012, Comput. Stat. Data Anal..

[6]  Víctor Leiva,et al.  On an extreme value version of the Birnbaum-Saunders distribution , 2012 .

[7]  Gilberto A. Paula,et al.  Robust statistical modeling using the Birnbaum-Saunders- t distribution applied to insurance , 2012 .

[8]  Cristian Villegas,et al.  Birnbaum-Saunders Mixed Models for Censored Reliability Data Analysis , 2011, IEEE Transactions on Reliability.

[9]  Narayanaswamy Balakrishnan,et al.  On some mixture models based on the BirnbaumSaunders distribution and associated inference , 2011 .

[10]  Narayanaswamy Balakrishnan,et al.  Estimation of extreme percentiles in Birnbaum-Saunders distributions , 2011, Comput. Stat. Data Anal..

[11]  H. Bolfarine,et al.  Skew scale mixtures of normal distributions: Properties and estimation , 2011 .

[12]  Chad R. Bhatti,et al.  The Birnbaum-Saunders autoregressive conditional duration model , 2010, Math. Comput. Simul..

[13]  Samuel Kotz,et al.  Two New Mixture Models Related to the Inverse Gaussian Distribution , 2010 .

[14]  George Christakos,et al.  An extended Birnbaum–Saunders model and its application in the study of environmental quality in Santiago, Chile , 2010 .

[15]  Narayanaswamy Balakrishnan,et al.  Estimation in the Birnbaum-Saunders distribution based on scale-mixture of normals and the EM-algorithm , 2009 .

[16]  Mia Hubert,et al.  An adjusted boxplot for skewed distributions , 2008, Comput. Stat. Data Anal..

[17]  Francisco Cribari-Neto,et al.  On Birnbaum-Saunders inference , 2007, Comput. Stat. Data Anal..

[18]  Debasis Kundu,et al.  On the hazard function of Birnbaum-Saunders distribution and associated inference , 2008, Comput. Stat. Data Anal..

[19]  Heleno Bolfarine,et al.  Skew‐symmetric distributions generated by the distribution function of the normal distribution , 2007 .

[20]  Narayanaswamy Balakrishnan,et al.  Acceptance Sampling Plans from Truncated Life Tests Based on the Generalized Birnbaum–Saunders Distribution , 2007, Commun. Stat. Simul. Comput..

[21]  José A. Díaz-García,et al.  A new family of life distributions based on the elliptically contoured distributions , 2005 .

[22]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[23]  Geoffrey M. Laslett,et al.  Kriging and Splines: An Empirical Comparison of their Predictive Performance in Some Applications , 1994 .

[24]  James R. Rieck,et al.  A log-linear model for the Birnbaum-Saunders distribution , 1991 .

[25]  M. West On scale mixtures of normal distributions , 1987 .

[26]  N. Henze A Probabilistic Representation of the 'Skew-normal' Distribution , 1986 .

[27]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[28]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[29]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[30]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[31]  Z. Birnbaum,et al.  A new family of life distributions , 1969, Journal of Applied Probability.