TMS modulation of visual and auditory processing in the posterior parietal cortex

Audio-visual stimuli typically yield faster responses than isolated modality-specific ones. This crossmodal speed advantage depends upon efficient multisensory integration mechanisms in the brain. Here, we used repetitive transcranial magnetic stimulation (rTMS) to address the role of the posterior parietal cortex, in particular of the inferior parietal lobule (IPL), in speeding up responses to crossmodal stimuli. The results show that rTMS over IPL impairs the response to contralateral modality-specific visual and auditory targets without affecting the response speed advantage following audio-visual targets. Furthermore, this speed advantage is subserved by a neural coactivation mechanism suggesting a summation in a given neural site. Control rTMS over V1 impaired only contralateral visual responses without affecting the response to auditory or audio-visual targets. These results suggest that the response speed advantage for crossmodal targets is maintained in spite of the IPL interference that impairs modality-specific responses. The possible role of alternative sites for the audio-visual advantage, such as the superior colliculus, is discussed.

[1]  W. Schwarz,et al.  Diffusion, superposition, and the redundant-targets effect , 1994 .

[2]  T. Stanford,et al.  Superadditivity in multisensory integration: putting the computation in context. , 2007, Neuroreport.

[3]  B. Stein,et al.  The Merging of the Senses , 1993 .

[4]  J. Rothwell,et al.  Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity , 2000, Current Opinion in Neurobiology.

[5]  J. Downar,et al.  A multimodal cortical network for the detection of changes in the sensory environment , 2000, Nature Neuroscience.

[6]  Leslie G. Ungerleider,et al.  The neural basis of biased competition in human visual cortex , 2001, Neuropsychologia.

[7]  V. Amassian,et al.  Suppression of visual perception by magnetic coil stimulation of human occipital cortex. , 1989, Electroencephalography and clinical neurophysiology.

[8]  Marinella Cappelletti,et al.  rTMS over the intraparietal sulcus disrupts numerosity processing , 2007, Experimental Brain Research.

[9]  S. Sterbing-D’Angelo,et al.  Behavioral/systems/cognitive Multisensory Space Representations in the Macaque Ventral Intraparietal Area , 2022 .

[10]  Brigitte Röder,et al.  Multisensory processing in the redundant-target effect: A behavioral and event-related potential study , 2005, Perception & psychophysics.

[11]  Jeff Miller,et al.  Divided attention: Evidence for coactivation with redundant signals , 1982, Cognitive Psychology.

[12]  Barry E. Stein,et al.  The development of a dialogue between cortex and midbrain to integrate multisensory information , 2005, Experimental Brain Research.

[13]  J. Paillard Brain and space , 1991 .

[14]  S. Iversen,et al.  Detection of Audio-Visual Integration Sites in Humans by Application of Electrophysiological Criteria to the BOLD Effect , 2001, NeuroImage.

[15]  J. Rauschecker,et al.  Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans , 1999, Nature Neuroscience.

[16]  E. Schröger,et al.  Speeded responses to audiovisual signal changes result from bimodal integration. , 1998, Psychophysiology.

[17]  M. Alex Meredith,et al.  Neurons and behavior: the same rules of multisensory integration apply , 1988, Brain Research.

[18]  N. Bolognini,et al.  The role of superior colliculus in audio-visual integration in humans: clues from the redundant target effect , 2007 .

[19]  R A Andersen,et al.  Multimodal integration for the representation of space in the posterior parietal cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[21]  J. Duncan,et al.  Competitive brain activity in visual attention , 1997, Current Opinion in Neurobiology.

[22]  Nadia Bolognini,et al.  Audiovisuol integration in patients with visul deficit , 2005 .

[23]  Gregor Thut,et al.  Feeling by Sight or Seeing by Touch? , 2004, Neuron.

[24]  G. Vallar,et al.  Neglect syndromes: the role of the parietal cortex. , 2003, Advances in neurology.

[25]  Stephanie Clarke,et al.  Auditory Neglect: What and Where in Auditory Space , 2004, Cortex.

[26]  J Hyvärinen,et al.  Regional distribution of functions in parietal association area 7 of the monkey. , 1981, Brain research.

[27]  W. Jiang,et al.  Two cortical areas mediate multisensory integration in superior colliculus neurons. , 2001, Journal of neurophysiology.

[28]  D. Raab Statistical facilitation of simple reaction times. , 1962, Transactions of the New York Academy of Sciences.

[29]  Á. Pascual-Leone,et al.  Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex , 2002, Clinical Neurophysiology.

[30]  Michael S Beauchamp,et al.  See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex , 2005, Current Opinion in Neurobiology.

[31]  Jon Driver,et al.  Auditory and multisensory aspects of visuospatial neglect , 2003, Trends in Cognitive Sciences.

[32]  Nadia Bolognini,et al.  Visual search improvement in hemianopic patients after audio-visual stimulation , 2005 .

[33]  N. Bolognini,et al.  Is audiovisual integration subserved by the superior colliculus in humans? , 2008, Neuroreport.

[34]  Parashkev Nachev,et al.  Disorders of Visual Attention and the Posterior Parietal Cortex , 2006, Cortex.

[35]  E. Ringelstein,et al.  Changing cortical excitability with low-frequency transcranial magnetic stimulation can induce sustained disruption of tactile perception , 2003, Biological Psychiatry.

[36]  Alvaro Pascual-Leone,et al.  Safety of rTMS to non-motor cortical areas in healthy participants and patients , 2006, Clinical Neurophysiology.

[37]  B. Stein Neural mechanisms for synthesizing sensory information and producing adaptive behaviors , 1998, Experimental Brain Research.

[38]  R. Töpper,et al.  Role of the Posterior Parietal Cortex in Spatial Hearing , 2002, The Journal of Neuroscience.

[39]  B. Stein,et al.  Two Corticotectal Areas Facilitate Multisensory Orientation Behavior , 2002, Journal of Cognitive Neuroscience.

[40]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[41]  Francesco Pavani,et al.  Neglect and extinction: within and between sensory modalities. , 2006, Restorative neurology and neuroscience.

[42]  C. Gross,et al.  Spatial maps for the control of movement , 1998, Current Opinion in Neurobiology.

[43]  T. Stanford,et al.  Multisensory integration: current issues from the perspective of the single neuron , 2008, Nature Reviews Neuroscience.

[44]  Nadia Bolognini,et al.  Proprioceptive Alignment of Visual and Somatosensory Maps in the Posterior Parietal Cortex , 2007, Current Biology.

[45]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[46]  M. Hallett,et al.  Depression of motor cortex excitability by low‐frequency transcranial magnetic stimulation , 1997, Neurology.

[47]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[48]  E. Wassermann Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. , 1998, Electroencephalography and clinical neurophysiology.

[49]  M. Wallace,et al.  Integration of multiple sensory modalities in cat cortex , 2004, Experimental Brain Research.

[50]  D. Raab DIVISION OF PSYCHOLOGY: STATISTICAL FACILITATION OF SIMPLE REACTION TIMES* , 1962 .

[51]  Gereon R. Fink,et al.  Space Coding in Primate Posterior Parietal Cortex , 2001, NeuroImage.

[52]  E. Macaluso,et al.  Multisensory spatial interactions: a window onto functional integration in the human brain , 2005, Trends in Neurosciences.