High-precision astrometry with MICADO at the European Extremely Large Telescope

In this article, we identify and discuss various statistical and systematic effects influencing the astrometric accuracy achievable with Multi-adaptive optics Imaging CAmera for Deep Observations, the near-infrared (NIR) imaging camera proposed for the 42-m European Extremely Large Telescope. These effects are instrumental (e.g. geometric distortion), atmospheric (e.g. chromatic differential refraction) and astronomical (reference source selection). We find that there are several phenomena having impact on ∼100 μas scales, meaning they can be substantially larger than the theoretical statistical astrometric accuracy of an optical/NIR 42-m telescope. Depending on type, these effects need to be controlled via dedicated instrumental design properties or via dedicated calibration procedures. We conclude that if this is done properly, astrometric accuracies of 40 μas or better - with 40 μas yr ―1 in proper motions corresponding to ≈20 km s ―1 at 100 kpc distance - can be achieved in one epoch of actual observations.

[1]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[2]  D. Tytler,et al.  Differential Atmospheric Refraction and Limitations on the Relative Astrometric Accuracy of Large Telescopes , 1998 .

[3]  Wesley A. Traub,et al.  The SIM PlanetQuest science program , 2006 .

[4]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[5]  Laird M. Close,et al.  Analysis of isoplanatic high resolution stellar fields by the StarFinder code , 2000 .

[7]  T. Fusco,et al.  Characterization of adaptive optics point spread function for anisoplanatic imaging. Application to stellar field deconvolution , 2000 .

[8]  T. Ebisuzaki,et al.  The Ecology of Star Clusters and Intermediate-Mass Black Holes in the Galactic Bulge , 2005, astro-ph/0511397.

[9]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[11]  Naoteru Gouda,et al.  JASMINE project – Instrument design and centroiding experiment , 2006 .

[12]  Oliver Montenbruck,et al.  Astronomie Mit Dem Personal Computer , 1990 .

[13]  S. R. Kulkarni,et al.  Precision Astrometry With Adaptive Optics , 2009 .

[14]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[15]  P. T. de Zeeuw,et al.  The Central Parsecs of Centaurus A: High-excitation Gas, a Molecular Disk, and the Mass of the Black Hole , 2007, 0709.1877.

[16]  Roberto Gilmozzi,et al.  The 42m European ELT: status , 2008, Astronomical Telescopes + Instrumentation.

[17]  Richard Berry,et al.  The Handbook of Astronomical Image Processing , 2000 .

[18]  D. Gavel,et al.  Characterizing the Adaptive Optics Off-Axis Point-Spread Function. II. Methods for Use in Laser Guide Star Observations* , 2005 .

[19]  G. Carraro,et al.  The absolute motion of the peculiar cluster NGC 6791 , 2006 .

[20]  S. Wuyts,et al.  FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .

[21]  M. Greason,et al.  CORRECTING THE DISTORTION OF IMAGES TAKEN WITH THE ULTRAVIOLET IMAGING TELESCOPE , 1994 .

[22]  T. Paumard,et al.  The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared , 2004 .

[23]  Roberto Ragazzoni,et al.  A preliminary overview of the multiconjugate adaptive optics module for the E-ELT , 2008, Astronomical Telescopes + Instrumentation.

[24]  Ralf Bender,et al.  HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole , 2005, astro-ph/0509839.

[25]  S. Udry,et al.  High-precision astrometry on the VLT/FORS1 at time scales of few days , 2007, 0704.3883.

[26]  L. Greggio,et al.  Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry , 2003 .

[27]  Roberto Gilmozzi,et al.  Ground-based and Airborne Telescopes VII , 2008 .

[28]  France,et al.  Kinematics of the old stellar population at the galactic centre , 2008, 0810.1040.

[29]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[30]  B. Gibson,et al.  The Galactic Inner Halo: Searching for White Dwarfs and Measuring the Fundamental Galactic Constant, Θ0/R0 , 2003, astro-ph/0304036.

[31]  SUBARU SUPER DEEP FIELD WITH ADAPTIVE OPTICS. I. OBSERVATIONS AND FIRST IMPLICATIONS , 2005, astro-ph/0505348.

[32]  David Schiminovich,et al.  Hubble Space Telescope Morphologies of Local Lyman Break Galaxy Analogs. I. Evidence for Starbursts Triggered by Merging , 2007, 0709.3304.

[33]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[34]  P. P. van der Werf,et al.  Faint Infrared Extragalactic Survey: Data and Source Catalog of the MS 1054−03 Field , 2005, astro-ph/0510186.

[35]  M. Britton,et al.  The Anisoplanatic Point‐Spread Function in Adaptive Optics , 2006, astro-ph/0603170.

[36]  H. Rix,et al.  Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts , 2002, astro-ph/0212236.

[37]  Manoj Kaplinghat,et al.  Determining the Nature of Dark Matter with Astrometry , 2007, astro-ph/0701581.

[38]  Stefan Jordan,et al.  The Gaia Project - technique, performance and status , 2008, 0811.2345.

[39]  Yoshiyuki Yamada,et al.  Space astrometry project JASMINE , 2007 .

[40]  Jay Anderson,et al.  Toward High‐Precision Astrometry with WFPC2. I. Deriving an Accurate Point‐Spread Function , 2000, astro-ph/0006325.

[41]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[42]  R. Lenzen,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[43]  W. L. Ngai MSc Thesis , 2015 .

[44]  Jessica R. Lu,et al.  The First Laser Guide Star Adaptive Optics Observations of the Galactic Center: Sgr A*’s Infrared Color and the Extended Red Emission in its Vicinity , 2005, astro-ph/0508664.

[45]  European Southern Observatory,et al.  Characterizing the Adaptive Optics Off‐Axis Point‐Spread Function. I. A Semiempirical Method for Use in Natural Guide Star Observations , 2002, astro-ph/0207261.

[46]  Jessica R. Lu,et al.  A DISK OF YOUNG STARS AT THE GALACTIC CENTER AS DETERMINED BY INDIVIDUAL STELLAR ORBITS , 2008, 0808.3818.

[47]  Karl Gebhardt,et al.  Evidence for an Intermediate Mass Black Hole in Omega Centauri , 2006, 0801.2782.

[48]  Giampaolo Piotto,et al.  Ground-based CCD astrometry with wide field imagers - I. Observations just a few years apart allow decontamination of field objects from members in two globular clusters , 2006 .

[49]  Karl Gebhardt,et al.  Gemini and Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in ω Centauri , 2008 .

[50]  M. D. Lehnert,et al.  Accounting for the anisoplanatic point spread function in deep wide-field adaptive optics images , 2005, astro-ph/0504467.

[51]  Stefan Gillessen,et al.  SINFONI data reduction software , 2006 .

[52]  Krzysztof G. Helminiak,et al.  Impact of the atmospheric refraction on the precise astrometry with adaptive optics in infrared , 2008, 0805.3369.