Unusual plant-growth regulators from microorganisms

Microorganisms produce a wide assortment of secondary metabolites which may be used to control growth and development of plants. These natural products are diverse in structure and range from oligopeptides to complex and simple nonamino acid molecules. Each has unique properties, but in general they have high specific activity, a narrow spectrum of activity, and are biodegradable. Each molecule has the potential for synthetic modification by two routes. One is to derivatize the natural product; the other is to synthesize simpler structures which are analogs of the natural product. Thus, the spectrum of activity may be suitably altered. Fermentation products and their derivatives are logical candidates for the next generation of agrochemicals. Examples of microbial secondary metabolites and their structures, relative to biological activity, are discussed.

[1]  J. Gardner,et al.  Nonselective phytotoxins simultaneously produced with host-selective ACTG-toxins by a pathotype of Alternaria citri causing brown spot disease of mandarins , 1986 .

[2]  Masashi Watanabe,et al.  Synthesis of Optically Active Pyriculol, a Phytotoxic Metabolite Produced by Pyricularia oryzae Cavara , 1986 .

[3]  A. Isogai,et al.  Isolation, X-Ray Structure and Biological Activity of Deacetyldihydrobotrydial Produced by Botrytis squamosa , 1986 .

[4]  H. Tsunoda,et al.  Chemical and Toxicological Studies of the Phytotoxin, 6α,7β,9α-Trihydroxy-8(14), 15-isopimaradiene-20,6-γ-lactone, Produced by a Parasitic Fungus, Phomopsis sp., in Wilting Pine Trees , 1986 .

[5]  T. Hamasaki,et al.  Stereochemistry and Biological Activities of LL-P880γ, a Pestalotin Analogue, Produced by Penicillium citreo-viride , 1986 .

[6]  Takeshi Matsumoto,et al.  Structures and Phytotoxicity of Metabolites from Valsa ceratosperma , 1986 .

[7]  H. Shibai,et al.  Structure of new antibiotics, pereniporins A and B, from a basidiomycete. , 1986, The Journal of antibiotics.

[8]  T. Hamasaki,et al.  Structure of Pevalic Acid, a New Metabolite from Penicillium valiabile Sopp, and Its Biological Activity , 1986 .

[9]  Yoshikatsu Suzuki,et al.  Studies on Host-selective Toxins Produced by a Pathotype of Alternaria citri Causing Brown Spot Disease of Mandarins(Organic Chemistry) , 1986 .

[10]  L. Merlini,et al.  Secondary mould metabolites. Part 16. Stemphyltoxins, new reduced perylenequinone metabolites from Stemphylium botryosum var. Lactucum , 1986 .

[11]  T. Furuya,et al.  Structures of cyclocarbamides A and B, new plant growth regulators from sp. , 1986 .

[12]  R. J. Cole,et al.  1 – Biological Screening Methods for Mycotoxins and Toxigenic Fungi , 1986 .

[13]  J. Clardy,et al.  Exserohilone: a novel phytotoxin produced by Exserohilum holmii , 1985 .

[14]  H. Seto,et al.  Neorustmicin A, a new macrolide antibiotic active against wheat stem rust fungus. , 1985, The Journal of antibiotics.

[15]  J. Mudd,et al.  The Biosynthesis of the Pyrenocines in Cultures of Pyrenochaeta terrestris. , 1985, Plant physiology.

[16]  Y. Shimohigashi,et al.  CONFORMATION OF CYCLO(-L-PRO-D-LEU-D-TYR(ME)-L-ILE-) PREDICTED BY EMPIRICAL RULES FOR CYCLIC TETRAPEPTIDES WAS EVIDENCED BY 1H- AND 13C-NMR SPECTROSCOPY , 1985 .

[17]  S. Marumo,et al.  (-)-Mitorubrinic acid, a morphogenic substance inducing chlamydospore-like cells, and its related new metabolite, (+)-mitorubrinic acid B, isolated from Penicillium funiculosum. , 1985 .

[18]  Y. Kitano,et al.  Absolute Stereochemistry of Cladospolide A, a Phytotoxic Macrolide from Cladosporium cladosporioides , 1985 .

[19]  A. Isogai,et al.  New plant growth regulators, cladospolide A and B, macrolides produced by Cladosporium cladosporioides , 1985 .

[20]  S. Marumo,et al.  Botrydienal, a new prytotoxin, and its related metabolites, dehydrobotrydienal and deacetyldihydrobotrydial produced by botryotinia squamosa , 1985 .

[21]  G. Strobel,et al.  The Identification of a Major Phytotoxic Component from Alternaria macrospora as αβ-Dehydrocurvularin , 1985 .

[22]  K. Tomer,et al.  Structure of an amino acid analog of the host-specific toxin from helminthosporium carbonum , 1985 .

[23]  B. Burke,et al.  Phytotoxins from Alternaria helianthi: radicinin, and the structures of deoxyradicinol and radianthin , 1985 .

[24]  A. Evidente,et al.  A cytokinin from the culture filtrate of Pseudomonas syringae pv. savastanoi , 1985 .

[25]  N. Claydon,et al.  Elm bark beetle boring and feeding deterrents from Phomopsis oblonga , 1985 .

[26]  A. Isogai,et al.  Isolation and Identification of ( + )-Hexylitaconic Acid as a Plant Growth Regulator , 1984 .

[27]  R. Livingston,et al.  Selective Toxins and Analogs Produced by Helminthosporium sacchari: Production, Characterization, and Biological Activity. , 1984, Plant physiology.

[28]  T. Oritani,et al.  A novel abscisic acid analog, (+)-(2Z,4E)-5-(1',4'-dihydroxy-6',6'-dimethyl-2'-methylenecyclohexyl)-3-methyl-2,4-pentadienoic acid, from Cercospora cruenta. , 1984 .

[29]  G. Strobel,et al.  3-Epideoxyradicinol and the biosynthesis of deoxyradicinin , 1984 .

[30]  Hiroshi Suzuki,et al.  Structure of Cyl-1, a novel cyclotetrapeptide from Cylindrocladium scoparium. , 1984 .

[31]  R. Livingston,et al.  Toxic and protective effects of analogues of Helminthosporium sacchari toxin on sugarcane tissues , 1984 .

[32]  B. Burke,et al.  Pyrenocine C, A phytotoxin-related metabolite produced by onion pink root fungus, Pyrenochaeta terrestris , 1984 .

[33]  T. Oritani,et al.  The Metabolism of (2Z,4E)-α-Ionylideneacetic Acid in Cercospora cruenta, a Fungus Producing (+)-Abscisic Acid , 1983 .

[34]  A. Isogai,et al.  Nigerazine B, a New Metabolite from Aspergillus niger Screening, Isolation, and Chemical and Biological Properties , 1983 .

[35]  D. Rich,et al.  The structure and conformation of HC-toxin. , 1983, Biochemical and biophysical research communications.

[36]  A. Whalley,et al.  Metabolites of the higher fungi. Part 21. 3-Methyl-3, 4-dihydroisocoumarins and related compounds from the ascomycete family Xylariaceae , 1983 .

[37]  S. Kondo,et al.  Lunatoic Acid A, a Morphogenic Substance Inducing Chlamydospore-like Cells in Some Fungi , 1982 .

[38]  S. Kondo,et al.  Microbial Production of Abscisic Acid by Botrytis cinerea , 1982 .

[39]  T. Oritani,et al.  The Metabolism of Analogs of Abscisic Acid in Cercospora cruenta , 1982 .

[40]  J. Springer,et al.  Plant growth regulatory effects and stereochemistry of cladosporin , 1981 .

[41]  M. Schroth,et al.  Factors affecting antibiosis of plant growth promoting rhizobacteria , 1981 .

[42]  Takeshi Matsumoto,et al.  X-Ray Crystal Structure of Pyrenocine A, a Phytotoxin from Pyrenochaeta terrestris , 1981 .

[43]  R. Livingston,et al.  Sensitivity of sugarcane clones to toxin from Helminthosporium sacchari as determined by electrolyte leakage. , 1980 .

[44]  S. Yamamura,et al.  Isolation and structure of citreopyrone, a metabolite of biourge , 1980 .

[45]  R. C. Carpenter,et al.  (−)-5-Methylmellein and catechol derivatives from four Semecarpus species , 1980 .

[46]  K Kohmoto,et al.  HOST- SELECTIVE TOXINS FROM ALTERNARIA CITRI , 1979 .

[47]  T. Sassa,et al.  Structures of new plant growth inhibitors, trans- and cis-resorcylide. , 1978 .

[48]  J. Maia,et al.  Dihydroisocoumarins and phthalide from wood samples infested by fungi , 1978 .

[49]  M. Nukina,et al.  Lunatoic acid A and B, aversion factor and its related metabolite of cochliobolus lunata , 1977 .

[50]  E. Dasilva,et al.  Ethylene production by fungi , 1974 .

[51]  G. Ellestad,et al.  New fungal lactone, LL-P880.beta., and a new pyrone, LL-880.gamma., from a Penicillium species , 1973 .

[52]  S. Tamura,et al.  Characterization of Four Amino Acids Constituting Cyl-2, a Metabolite from Cylindrocladium scoparium , 1973 .

[53]  Hiroshi Suzuki,et al.  Isolation and Biological Activity of Cyl-2, a Metabolite of Cylindrocladium scoparium , 1973 .

[54]  G. Ellestad,et al.  Structures of fungal diterpene antibiotics LL-S491 and - . , 1972, Journal of the American Chemical Society.

[55]  S. Tamura,et al.  Isolation and Biological Activity of Pestalotin, a Gibberellin Synergist from Pestalotia cryptomeriaecola , 1971 .

[56]  J. J. Ellis,et al.  11-Hydroxy-trans-8-dodecenoic Acid Lactone, a 12-Membered-Ring Compound from a Fungus , 1971 .

[57]  I. D. Phillips Introduction to the biochemistry and physiology of plant growth hormones , 1971 .

[58]  S. Iwasaki,et al.  Isolation and structural elucidation of a phytotoxic substance produced by , 1969 .

[59]  R. Templeton,et al.  Curvularin. Part V. The compound C16H18O5, αβ-dehydrocurvularin , 1967 .

[60]  A. Ballio,et al.  5-Methylmellein, a new natural dihydroisocoumarin , 1966 .

[61]  J. Grove 615. Metabolic products of stemphylium radicinum. Part I. Radicinin , 1964 .

[62]  J. Nitsch,et al.  Studies on the Growth of Coleoptile and First Internode Sections. A New, Sensitive, Straight-Growth Test for Auxins. , 1956, Plant physiology.

[63]  O. C. Musgrave 828. Curvularin. Part I. Isolation and partial characterisation of a metabolic product from a new species of Curvularia , 1956 .

[64]  P. W. Brian,et al.  The plant‐growth‐promoting properties of gibberellic acid, a metabolic product of the fungus gibberella fujikuroi , 1954 .

[65]  K. Thimann On the plant growth hormone produced by Rhizopus suinus , 1935 .