Leader-following consensus for a class of second-order nonlinear multi-agent systems

Abstract This paper deals with the leader-following consensus problem for a class of multi-agent systems with nonlinear dynamics and directed communication topology. The control input of the leader agent is assumed to be unknown to all follower agents. A distributed adaptive nonlinear control law is constructed using the relative state information between neighboring agents, which achieves leader-following consensus for any directed communication graph that contains a spanning tree with the root node being the leader agent. Compared with previous results, the nonlinear functions are not required to satisfy the globally Lipschitz or Lipschitz-like condition and the adaptive consensus protocol is in a distributed fashion. A numerical example is given to verify our proposed protocol.

[1]  Frank Allgöwer,et al.  An internal model principle is necessary and sufficient for linear output synchronization , 2011, Autom..

[2]  Frank L. Lewis,et al.  Optimal Design for Synchronization of Cooperative Systems: State Feedback, Observer and Output Feedback , 2011, IEEE Transactions on Automatic Control.

[3]  Wenwu Yu,et al.  Consensus in Directed Networks of Agents With Nonlinear Dynamics , 2011, IEEE Transactions on Automatic Control.

[4]  Wenjie Dong,et al.  Adaptive consensus seeking of multiple nonlinear systems , 2012 .

[5]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[6]  Guangming Xie,et al.  Consensus for multi-agent systems with inherent nonlinear dynamics under directed topologies , 2013, Syst. Control. Lett..

[7]  Jiangping Hu,et al.  Tracking control for multi-agent consensus with an active leader and variable topology , 2006, Autom..

[8]  Kim D. Listmann,et al.  Passivity-based coordination of multi-agent systems: A backstepping approach , 2009, 2009 European Control Conference (ECC).

[9]  Jie Huang,et al.  Nonlinear Output Regulation: Theory and Applications , 2004 .

[10]  Guoqiang Hu,et al.  Robust consensus tracking of a class of second-order multi-agent dynamic systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[11]  H. Ji,et al.  Leader-follower consensus for a class of nonlinear multi-agent systems , 2012 .

[12]  Xinghu Wang,et al.  Leader-following consensus for an integrator-type nonlinear multi-agent systems using distributed adaptive protocol , 2013, 2013 10th IEEE International Conference on Control and Automation (ICCA).

[13]  Wenwu Yu,et al.  Second-Order Consensus for Multiagent Systems With Directed Topologies and Nonlinear Dynamics , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Frank L. Lewis,et al.  Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics , 2012, Autom..

[15]  Jinde Cao,et al.  Second-order leader-following consensus of nonlinear multi-agent systems via pinning control , 2010, Syst. Control. Lett..

[16]  Guoqiang Hu,et al.  Robust consensus tracking for an integrator-type multi-agent system with disturbances and unmodelled dynamics , 2011, Int. J. Control.

[17]  Guangfu Ma,et al.  Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements , 2013, Autom..

[18]  Wei Xing Zheng,et al.  Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics , 2013, Autom..

[19]  Lin Huang,et al.  Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Jiangping Hu,et al.  Leader-following coordination of multi-agent systems with coupling time delays , 2007, 0705.0401.

[21]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[22]  Hyungbo Shim,et al.  Output Consensus of Heterogeneous Uncertain Linear Multi-Agent Systems , 2011, IEEE Transactions on Automatic Control.

[23]  Lihua Xie,et al.  Distributed Tracking Control for Linear Multiagent Systems With a Leader of Bounded Unknown Input , 2013, IEEE Transactions on Automatic Control.