2-D CFD time-dependent thermal-hydraulic simulations of CANDU-6 moderator flows

Abstract The distribution of the fluid temperature and mass density of the moderator flow in CANDU-6 nuclear power reactors may affect the reactivity coefficient. For this reason, any possible moderator flow configuration and consequently the corresponding temperature distributions must be studied. In particular, the variations of the reactivity may result in major safety issues. For instance, excessive temperature excursions in the vicinity of the calandria tubes nearby local flow stagnation zones, may bring about partial boiling. Moreover, steady-state simulations have shown that for operating condition, intense buoyancy forces may be dominant, which can trigger a thermal stratification. Therefore, the numerical study of the time-dependent flow transition to such a condition, is of fundamental safety concern. Within this framework, this paper presents detailed time-dependent numerical simulations of CANDU-6 moderator flow for a wide range of flow conditions. To get a better insight of the thermal-hydraulic phenomena, the simulations were performed by covering long physical-time periods using an open-source code (Code_Saturne V3) developed by Electricite de France. The results show not only a region where the flow is characterized by coherent structures of flow fluctuations but also the existence of two limit cases where fluid oscillations disappear almost completely.

[1]  Byung-Joo Min,et al.  Development and Validation of the 3-D Computational Fluid Dynamics Model for CANDU-6 Moderator Temperature Predictions , 2004 .

[2]  Romain Necciari,et al.  Simulations de l'écoulement et du transfert de chaleur du modérateur du réacteur CANDU , 2011 .

[3]  H. F. Khartabil,et al.  Three-dimensional moderator circulation experimental program for validation of CFD code MODTURC - CLAS , 2000 .

[4]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[5]  Byung-Joo Min,et al.  3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Condirions , 2004 .

[6]  Y. Parlatan,et al.  Temperature Fluctuations in a CANDU Moderator Test Facility , 2009 .

[7]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[8]  Hyoung Tae Kim,et al.  COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THE CANADIAN DEUTERIUM URANIUM MODERATOR TESTS AT THE STERN LABORATORIES INC. , 2015 .

[9]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[10]  J. C. Mandal,et al.  Simulation of Moderator Flow and Temperature Inside Calandria of CANDU Reactor Using Artificial Compressibility Method , 2014 .

[11]  Jae Jun Jeong,et al.  Numerical investigation of the CANDU moderator thermal-hydraulics using the CUPID code , 2015 .

[12]  Jae Jun Jeong,et al.  Assessment of the CUPID code applicability to the thermal-hydraulic analysis of a CANDU moderator system , 2014 .

[13]  L. N. Carlucci,et al.  The effects of symmetric/asymmetric boundary conditions on the flow of an internally heated fluid , 1986 .

[14]  A. Teyssedou,et al.  Moderator Flow Simulation Around Calandria Tubes of Candu-6 Nuclear Reactors , 2014 .

[15]  Hyoung Tae Kim,et al.  Scaled-Down Moderator Circulation Test Facility at Korea Atomic Energy Research Institute , 2016 .

[16]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[17]  Dan G. Cacuci,et al.  Handbook of Nuclear Engineering , 2010 .

[18]  Araz Sarchami,et al.  Temperature fluctuations inside the CANDU reactor Moderator Test Facility (MTF) , 2013 .

[19]  Araz Sarchami,et al.  Investigation of Thermal Hydraulics of a Nuclear Reactor Moderator , 2011 .

[20]  Araz Sarchami,et al.  Three dimensional numerical simulation of a full scale CANDU reactor moderator to study temperature fluctuations , 2012 .

[21]  Stephane Etienne,et al.  CFD simulation of the moderator flow in CANDU-6 nuclear reactors , 2017 .

[22]  F. Archambeau,et al.  Code Saturne: A Finite Volume Code for the computation of turbulent incompressible flows - Industrial Applications , 2004 .

[23]  P. Chassaing Turbulence en mécanique des fluides , 2000 .

[24]  Ilie Prisecaru,et al.  IMPROVEMENT OF THE THERMALHYDRAULIC CHARACTERISTICS IN THE CALANDRIA VESSEL OF A CANDU 6 NUCLEAR REACTOR , 2013 .

[25]  Hho-Jung Kim,et al.  Analyses on fluid flow and heat transfer inside Calandria vessel of CANDU-6 using CFD , 2006 .