Fractal Dimension and Lower Bounds for Geometric Problems

[1]  Anupam Gupta,et al.  The Online Metric Matching Problem for Doubling Metrics , 2012, ICALP.

[2]  Anupam Gupta,et al.  Small Hop-diameter Sparse Spanners for Doubling Metrics , 2006, SODA '06.

[3]  Anupam Gupta,et al.  Approximating TSP on metrics with bounded global growth , 2008, SODA '08.

[4]  Dániel Marx,et al.  The limited blessing of low dimensionality: when 1-1/d is the best possible exponent for d-dimensional geometric problems , 2014, Symposium on Computational Geometry.

[5]  Jeffrey S. Salowe Construction of multidimensional spanner graphs, with applications to minimum spanning trees , 1991, SCG '91.

[6]  Richard Cole,et al.  Searching dynamic point sets in spaces with bounded doubling dimension , 2006, STOC '06.

[7]  Jochen Alber,et al.  Geometric Separation and Exact Solutions for the Parameterized Independent Set Problem on Disk Graphs , 2002, IFIP TCS.

[8]  Dániel Marx,et al.  Efficient Approximation Schemes for Geometric Problems? , 2005, ESA.

[9]  Lee-Ad Gottlieb,et al.  An Optimal Dynamic Spanner for Doubling Metric Spaces , 2008, ESA.

[10]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[11]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[12]  Yota Otachi,et al.  The carving-width of generalized hypercubes , 2010, Discret. Math..

[13]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[14]  Robert Krauthgamer,et al.  Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[15]  David R. Karger,et al.  Finding nearest neighbors in growth-restricted metrics , 2002, STOC '02.

[16]  Lee-Ad Gottlieb,et al.  The traveling salesman problem: low-dimensionality implies a polynomial time approximation scheme , 2011, STOC '12.

[17]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[18]  Robert Krauthgamer,et al.  The black-box complexity of nearest-neighbor search , 2005, Theor. Comput. Sci..