Hot-electron nanoscopy using adiabatic compression of surface plasmons.

[1]  Matteo Lorenzoni,et al.  Scanning probe oxidation of SiC, fabrication possibilities and kinetics considerations , 2013 .

[2]  Cristiano D'Andrea,et al.  Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. , 2013, ACS nano.

[3]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[4]  Andrea Giugni,et al.  Oxidative and carbonaceous patterning of Si surface in an organic media by scanning probe lithography , 2013, Nanoscale Research Letters.

[5]  Joseph Shappir,et al.  Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. , 2012, Optics express.

[6]  Wei Bao,et al.  Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging , 2012, Science.

[7]  Honghui Shen,et al.  Optimized plasmonic nanostructures for improved sensing activities. , 2012, Optics express.

[8]  Francesco De Angelis,et al.  Fully analytical description of adiabatic compression in dissipative polaritonic structures , 2012 .

[9]  E. Di Fabrizio,et al.  Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes , 2012, Plasmonics.

[10]  M. Engel,et al.  Antenna-enhanced photocurrent microscopy on single-walled carbon nanotubes at 30 nm resolution. , 2012, ACS nano.

[11]  Aeneas Wiener,et al.  Nonlocal effects in the nanofocusing performance of plasmonic tips. , 2012, Nano letters.

[12]  Francesco De Angelis,et al.  Surface plasmon polariton compression through radially and linearly polarized source. , 2012, Optics letters.

[13]  Andrea Toma,et al.  Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures , 2011 .

[14]  Federico Capasso,et al.  Effect of radiation damping on the spectral response of plasmonic components. , 2011, Optics express.

[15]  S. Kurtz,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2011, IEEE Journal of Photovoltaics.

[16]  Joseph Shappir,et al.  Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. , 2011, Nano letters.

[17]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[18]  Lukas Novotny,et al.  Electrical excitation of surface plasmons. , 2011, Physical review letters.

[19]  T. Gross,et al.  Impact of I-V behavior and estimated temperature rise on surface and tip modification of the nanocontact between a highly doped silicon scanning probe microscope tip and gold surface under ambient conditions , 2011 .

[20]  M. Stockman Erratum: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides [Phys. Rev. Lett.93, 137404 (2004)] , 2011 .

[21]  A. F. Morral,et al.  Compensation mechanism in silicon-doped gallium arsenide nanowires , 2010 .

[22]  Andreas Scholl,et al.  Scanning Probe Direct‐Write of Germanium Nanostructures , 2010, Advanced materials.

[23]  Emmanuel Rinnert,et al.  Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength , 2010 .

[24]  M. Ramsteiner,et al.  Incorporation of the dopants Si and Be into GaAs nanowires , 2010 .

[25]  Mark I. Stockman,et al.  Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods , 2008 .

[26]  Francesco De Angelis,et al.  A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. , 2008, Nano letters.

[27]  D. Barchiesi,et al.  Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy , 2008, Nanotechnology.

[28]  Reinhard Guckenberger,et al.  Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons. , 2007, Optics express.

[29]  M. Deutsch,et al.  Curvature-induced radiation of surface plasmon polaritons propagating around bends , 2007, physics/0703150.

[30]  William L. Barnes,et al.  REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .

[31]  P Lalanne,et al.  Theory of surface plasmon generation at nanoslit apertures. , 2005, Physical review letters.

[32]  Mauro Prasciolu,et al.  Focused ion beam lithography for two dimensional array structures for photonic applications , 2005 .

[33]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[34]  C. Donolato,et al.  Approximate analytical solution to the space charge problem in nanosized Schottky diodes , 2004 .

[35]  H. Minassian,et al.  On surface plasmon damping in metallic nanoparticles , 2003, cond-mat/0306123.

[36]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[37]  T. Klapwijk,et al.  Scaling of nano-Schottky-diodes , 2002, cond-mat/0202401.

[38]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[39]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[40]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[41]  H Han Haitjema,et al.  Deformation and wear of pyramidal, silicon-nitride AFM tips scanning micrometre-size features in contact mode , 1999 .

[42]  M. Koch,et al.  Laser-induced thermal expansion of a scanning tunneling microscope tip measured with an atomic force microscope cantilever , 1998 .

[43]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[44]  Koji Kato,et al.  Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM , 1996 .

[45]  C. Donolato,et al.  Electrostatic problem of a point charge in the presence of a semi‐infinite semiconductor , 1995 .

[46]  Mertens,et al.  Band-gap narrowing in GaAs using a capacitance method. , 1990, Physical review. B, Condensed matter.

[47]  M. D. Croon,et al.  Si-doping of MOCVD GaAs: Closer analysis of the incorporation process , 1989 .

[48]  Robert Mertens,et al.  Band‐gap narrowing in highly doped n‐ and p‐type GaAs studied by photoluminescence spectroscopy , 1989 .

[49]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[50]  H C Card,et al.  Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes , 1971 .

[51]  Vikram L. Dalal,et al.  Simple Model for Internal Photoemission , 1971 .

[52]  R. H. Ritchie,et al.  Surface-Plasmon Resonance Effect in Grating Diffraction , 1968 .

[53]  A. Many,et al.  Space-Charge-Limited Currents Injected from a Point Contact , 1964 .

[54]  R. Fowler,et al.  The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures , 1931 .

[55]  Davide Ricci,et al.  Recognizing and avoiding artifacts in atomic force microscopy imaging. , 2011, Methods in molecular biology.

[56]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[57]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[58]  William L Barnes,et al.  Surface plasmon – polariton length scales : a route to subwavelength optics , 2006 .

[59]  M. K. Hudaita,et al.  Doping dependence of the barrier height and ideality factor of Au / n-GaAs Schottky diodes at low temperatures , 2001 .

[60]  Jae-Eun Kim,et al.  Defect Luminescence in Heavily Si-Doped n- and p-type GaAs , 2000 .

[61]  Mantu K. Hudait,et al.  Anomalous current transport in Au/low-doped n-GaAs Schottky barrier diodes at low temperatures , 1999 .

[62]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[63]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .