Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms

Piezoelectric stack-actuated parallel-kinematic nanopositioning platforms are widely used in nanopositioning applications. These platforms have a dominant first resonant mode at relatively low frequencies, typically in the hundreds of hertz. Furthermore, piezoelectric stacks used for actuation have inherent nonlinearities such as hysteresis and creep. These problems result in a typically low-grade positioning performance. Closed-loop control algorithms have shown the potential to eliminate these problems and achieve robust, repeatable nanopositioning. Using closed-loop noise profile as a performance criterion, three commonly used damping controllers, positive position feedback, polynomial-based pole placement, and resonant control are compared for their suitability in nanopositioning applications. The polynomial-based pole placement controller is chosen as the most suitable of the three. Consequently, the polynomial-based control design to damp the resonant mode of the platform is combined with an integrator to produce raster scans of large areas. A scanning resolution of approximately 8 nm, over a 100 mum times 100 mum area is achieved.

[1]  T. Ando,et al.  A high-speed atomic force microscope for studying biological macromolecules in action. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  B Graffel,et al.  Feedforward correction of nonlinearities in piezoelectric scanner constructions and its experimental verification. , 2007, The Review of scientific instruments.

[3]  Naim A. Kheir,et al.  Control system design , 2001, Autom..

[4]  D. Croft,et al.  Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[5]  Santosh Devasia,et al.  Optimal tracking of piezo-based nanopositioners , 1999 .

[6]  S. O. Reza Moheimani,et al.  Experimental implementation of extended multivariable PPF control on an active structure , 2006, IEEE Transactions on Control Systems Technology.

[7]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  Meng-Shiun Tsai,et al.  Robust Tracking Control of a Piezoactuator Using a New Approximate Hysteresis Model , 2003 .

[9]  Manfred Morari,et al.  Adaptive multi-mode resonant piezoelectric shunt damping , 2004 .

[10]  J. L. Fanson,et al.  Positive position feedback control for large space structures , 1987 .

[11]  Hemanshu R. Pota,et al.  Resonant controllers for smart structures , 2002 .

[12]  Santosh Devasia,et al.  Iterative feedforward compensation of hysteresis in piezo positioners , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[13]  James K. Mills,et al.  Vibration Control of a Planar Parallel Manipulator Using Piezoelectric Actuators , 2005, J. Intell. Robotic Syst..

[14]  M. Ono [Scanning tunneling microscope]. , 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[15]  Georg Schitter,et al.  Data acquisition system for high speed atomic force microscopy , 2005 .

[16]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[17]  J. H. Makaliwe,et al.  Manipulation of nanoscale components with the AFM: principles and applications , 2001, Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).

[18]  G. Binnig,et al.  Single-tube three-dimensional scanner for scanning tunneling microscopy , 1986 .

[19]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[20]  S. O. R. Moheimani,et al.  Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms , 2008 .

[21]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[22]  藤正 巌 Micromachines : a new era in mechanical engineering , 1996 .

[23]  K. Youcef-Toumi,et al.  Creep in piezoelectric scanners of atomic force microscopes , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[24]  Hewon Jung,et al.  Tracking control of piezoelectric actuators , 2001 .

[25]  S. O. Reza Moheimani,et al.  High-Performance Control of Piezoelectric Tube Scanners , 2007, IEEE Transactions on Control Systems Technology.

[26]  Toshio Ando,et al.  Active damping of the scanner for high-speed atomic force microscopy , 2005 .

[27]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[28]  M Ferrari,et al.  Microfabricated immunoisolating biocapsules. , 1998, Biotechnology and bioengineering.