Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms
暂无分享,去创建一个
[1] T. Ando,et al. A high-speed atomic force microscope for studying biological macromolecules in action. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.
[2] B Graffel,et al. Feedforward correction of nonlinearities in piezoelectric scanner constructions and its experimental verification. , 2007, The Review of scientific instruments.
[3] Naim A. Kheir,et al. Control system design , 2001, Autom..
[4] D. Croft,et al. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[5] Santosh Devasia,et al. Optimal tracking of piezo-based nanopositioners , 1999 .
[6] S. O. Reza Moheimani,et al. Experimental implementation of extended multivariable PPF control on an active structure , 2006, IEEE Transactions on Control Systems Technology.
[7] S. O. Reza Moheimani,et al. Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[8] Meng-Shiun Tsai,et al. Robust Tracking Control of a Piezoactuator Using a New Approximate Hysteresis Model , 2003 .
[9] Manfred Morari,et al. Adaptive multi-mode resonant piezoelectric shunt damping , 2004 .
[10] J. L. Fanson,et al. Positive position feedback control for large space structures , 1987 .
[11] Hemanshu R. Pota,et al. Resonant controllers for smart structures , 2002 .
[12] Santosh Devasia,et al. Iterative feedforward compensation of hysteresis in piezo positioners , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[13] James K. Mills,et al. Vibration Control of a Planar Parallel Manipulator Using Piezoelectric Actuators , 2005, J. Intell. Robotic Syst..
[14] M. Ono. [Scanning tunneling microscope]. , 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.
[15] Georg Schitter,et al. Data acquisition system for high speed atomic force microscopy , 2005 .
[16] Srinivasa M. Salapaka,et al. Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.
[17] J. H. Makaliwe,et al. Manipulation of nanoscale components with the AFM: principles and applications , 2001, Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).
[18] G. Binnig,et al. Single-tube three-dimensional scanner for scanning tunneling microscopy , 1986 .
[19] F. Allgöwer,et al. High performance feedback for fast scanning atomic force microscopes , 2001 .
[20] S. O. R. Moheimani,et al. Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms , 2008 .
[21] Richard A. Brown,et al. Introduction to random signals and applied kalman filtering (3rd ed , 2012 .
[22] 藤正 巌. Micromachines : a new era in mechanical engineering , 1996 .
[23] K. Youcef-Toumi,et al. Creep in piezoelectric scanners of atomic force microscopes , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[24] Hewon Jung,et al. Tracking control of piezoelectric actuators , 2001 .
[25] S. O. Reza Moheimani,et al. High-Performance Control of Piezoelectric Tube Scanners , 2007, IEEE Transactions on Control Systems Technology.
[26] Toshio Ando,et al. Active damping of the scanner for high-speed atomic force microscopy , 2005 .
[27] L. Ljung,et al. Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..
[28] M Ferrari,et al. Microfabricated immunoisolating biocapsules. , 1998, Biotechnology and bioengineering.