Stochastic Optimal Foraging: Tuning Intensive and Extensive Dynamics in Random Searches

Recent theoretical developments had laid down the proper mathematical means to understand how the structural complexity of search patterns may improve foraging efficiency. Under information-deprived scenarios and specific landscape configurations, Lévy walks and flights are known to lead to high search efficiencies. Based on a one-dimensional comparative analysis we show a mechanism by which, at random, a searcher can optimize the encounter with close and distant targets. The mechanism consists of combining an optimal diffusivity (optimally enhanced diffusion) with a minimal diffusion constant. In such a way the search dynamics adequately balances the tension between finding close and distant targets, while, at the same time, shifts the optimal balance towards relatively larger close-to-distant target encounter ratios. We find that introducing a multiscale set of reorientations ensures both a thorough local space exploration without oversampling and a fast spreading dynamics at the large scale. Lévy reorientation patterns account for these properties but other reorientation strategies providing similar statistical signatures can mimic or achieve comparable efficiencies. Hence, the present work unveils general mechanisms underlying efficient random search, beyond the Lévy model. Our results suggest that animals could tune key statistical movement properties (e.g. enhanced diffusivity, minimal diffusion constant) to cope with the very general problem of balancing out intensive and extensive random searching. We believe that theoretical developments to mechanistically understand stochastic search strategies, such as the one here proposed, are crucial to develop an empirically verifiable and comprehensive animal foraging theory.

[1]  Daniel Campos,et al.  Stochastic Foundations in Movement Ecology , 2014 .

[2]  Andy Reynolds,et al.  How many animals really do the Lévy walk? Comment. , 2008, Ecology.

[3]  D. J. Anderson,et al.  Optimal foraging and the traveling salesman , 1983 .

[4]  T. Schoener Theory of Feeding Strategies , 1971 .

[5]  H E Stanley,et al.  Average time spent by Lévy flights and walks on an interval with absorbing boundaries. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Ernesto P. Raposo,et al.  Stochastic Optimal Foraging Theory , 2013 .

[7]  R. Menzel,et al.  Displaced honey bees perform optimal scale-free search flights. , 2007, Ecology.

[8]  F. Bartumeus Behavioral intermittence, Lévy patterns, and randomness in animal movement , 2009 .

[9]  D. Kramer Foraging Behavior , 2022 .

[10]  Daniel Campos,et al.  Optimal intermittence in search strategies under speed-selective target detection. , 2012, Physical review letters.

[11]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[12]  Richard F. Green,et al.  Stochastic Models of Optimal Foraging , 1987 .

[13]  Marcos C. Santos,et al.  Dynamical robustness of Lévy search strategies. , 2003, Physical review letters.

[14]  D. B. Dusenbery Sensory Ecology: How Organisms Acquire and Respond to Information , 1992 .

[15]  S. Levin Ecosystems and the Biosphere as Complex Adaptive Systems , 1998, Ecosystems.

[16]  Liang Li,et al.  Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells , 2008, PloS one.

[17]  M. Shlesinger,et al.  Lévy Walks Versus Lévy Flights , 1986 .

[19]  H. Stanley,et al.  On growth and form : fractal and non-fractal patterns in physics , 1986 .

[20]  A. Kacelnik,et al.  Starlings (Sturnus vulgaris) exploiting patches: response to long-term changes in travel time , 1994 .

[21]  H. Berg Random Walks in Biology , 2018 .

[22]  Sergey V. Buldyrev,et al.  Properties of Lévy flights on an interval with absorbing boundaries , 2001 .

[23]  Ralf Metzler,et al.  Lévy strategies in intermittent search processes are advantageous , 2008, Proceedings of the National Academy of Sciences.

[24]  Frederic Bartumeus,et al.  How Landscape Heterogeneity Frames Optimal Diffusivity in Searching Processes , 2011, PLoS Comput. Biol..

[25]  Monique de Jager,et al.  Response to Comment on “Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity” , 2012, Science.

[26]  F. Weissing,et al.  Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity , 2011, Science.

[27]  O Bénichou,et al.  Two-dimensional intermittent search processes: An alternative to Lévy flight strategies. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  S. L. Lima,et al.  Illumination and the perception of remote habitat patches by white-footed mice , 1999, Animal Behaviour.

[29]  Frank Moss,et al.  Patch exploitation in two dimensions: from Daphnia to simulated foragers. , 2008, Journal of theoretical biology.

[30]  A M Reynolds,et al.  Optimising the success of random destructive searches: Lévy walks can outperform ballistic motions. , 2009, Journal of theoretical biology.

[31]  C. C. Filgueiras,et al.  Novelty affects paw preference performance in adult mice , 2010, Animal Behaviour.

[32]  Nick J. Royle,et al.  An Introduction to Behavioural Ecology Nicholas B. Davies John R. , 2013, Animal Behaviour.

[33]  Sergei Petrovskii,et al.  Comment on : “ Lévy walks evolve through interaction between movement and environmental complexity ” , 2011 .

[34]  T. Schoener A Brief History of Optimal Foraging Ecology , 1987 .

[35]  Joel s. Brown,et al.  Foraging : behavior and ecology , 2007 .

[36]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[37]  H. Stanley,et al.  The Physics of Foraging: An Introduction to Random Searches and Biological Encounters , 2011 .

[38]  S. Levin,et al.  Diffusion and Ecological Problems: Modern Perspectives , 2013 .

[39]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[40]  M. Plank,et al.  Optimal foraging: Lévy pattern or process? , 2008, Journal of The Royal Society Interface.

[41]  M. Moreau,et al.  Intermittent search strategies , 2011, 1104.0639.

[42]  S. L. Lima,et al.  Towards a behavioral ecology of ecological landscapes. , 1996, Trends in ecology & evolution.

[43]  S. Levin,et al.  Superdiffusion and encounter rates in diluted, low dimensional worlds , 2008 .

[44]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[45]  S. L. Lima,et al.  Landscape-level perceptual abilities in white-footed mice : perceptual range and the detection of forested habitat , 1997 .

[46]  Andrew M. Hein,et al.  Sensing and decision-making in random search , 2012, Proceedings of the National Academy of Sciences.

[47]  A. Kacelnik,et al.  Psychological mechanisms and the Marginal Value Theorem: effect of variability in travel time on patch exploitation , 1992, Animal Behaviour.

[48]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[49]  Frank Moss,et al.  Stochastic resonance and the evolution of Daphnia foraging strategy. , 2008, Physical biology.

[50]  Alan C. Kamil,et al.  Foraging behavior: ecological, ethological, and psychological approaches , 1980 .

[51]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[52]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[53]  A. M. Edwards,et al.  Assessing Lévy walks as models of animal foraging , 2011, Journal of The Royal Society Interface.

[54]  G. Zaslavsky,et al.  Lévy Flights and Related Topics in Physics , 2013 .

[55]  Anne Lohrli Chapman and Hall , 1985 .

[56]  Shlesinger,et al.  Comment on "Accelerated diffusion in Josephson junctions and related chaotic systems" , 1985, Physical review letters.

[57]  R. Kawai,et al.  Multi-scale properties of random walk models of animal movement: lessons from statistical inference , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[59]  Ernesto P. Raposo,et al.  The random search problem: trends and perspectives , 2009 .

[60]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[61]  Gerhard Hoffmann,et al.  The random elements in the systematic search behavior of the desert isopod Hemilepistus reaumuri , 1983, Behavioral Ecology and Sociobiology.

[62]  A. Reynolds Bridging the gulf between correlated random walks and Lévy walks: autocorrelation as a source of Lévy walk movement patterns , 2010, Journal of The Royal Society Interface.

[63]  S. Benhamou HOW MANY ANIMALS REALLY DO THE LÉVY WALK , 2007 .

[64]  G. Viswanathan,et al.  Optimal random searches of revisitable targets: Crossover from superdiffusive to ballistic random walks , 2004 .

[65]  G. Viswanathan,et al.  Necessary criterion for distinguishing true superdiffusion from correlated random walk processes. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  A. Reynolds,et al.  Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search , 2007, PloS one.

[67]  Frederic Bartumeus,et al.  Fractal reorientation clocks: Linking animal behavior to statistical patterns of search , 2008, Proceedings of the National Academy of Sciences.

[68]  E. Montroll Random walks on lattices , 1969 .

[69]  Larry L. Wolf Foraging Behavior: Ecological, Ethological, and Psychological Approaches, A.C. Kamil, D. Sargent (Eds.). Garland STMP Press, New York and London (1981), xvii , 1982 .

[70]  A. James,et al.  Optimizing the encounter rate in biological interactions: Ballistic versus Lévy versus Brownian strategies. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.