Higher-order adaptive finite-element methods for Kohn-Sham density functional theory

We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100-200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings-of the order of 1000-fold-relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn-Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Giacomo Bergamini,et al.  Photochemistry and Photophysics of Coordination Compounds: Ruthenium , 2007 .

[3]  Christian Linder,et al.  All-electron Kohn-Sham density functional theory on hierarchic finite element spaces , 2013, J. Comput. Phys..

[4]  John W. Wilkins,et al.  An energy-minimizing mesh for the Schro¨dinger equation , 1989 .

[5]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[6]  Yvon Maday,et al.  Numerical Analysis of Nonlinear Eigenvalue Problems , 2009, J. Sci. Comput..

[7]  Jean-François Méhaut,et al.  High Performance Computing / Le Calcul Intensif Daubechies wavelets for high performance electronic structure calculations: The BigDFT project , 2011 .

[8]  Vincenzo Balzani,et al.  Photochemistry and photophysics of coordination compounds , 2007 .

[9]  E Weinan,et al.  Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..

[10]  Gang Bao,et al.  An h-adaptive finite element solver for the calculations of the electronic structures , 2012, J. Comput. Phys..

[11]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[12]  Ville Havu,et al.  All-electron density functional theory and time-dependent density functional theory with high-order finite elements. , 2009, The Journal of chemical physics.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  M. Finnis,et al.  Interatomic Forces in Condensed Matter , 2003 .

[15]  Kaushik Bhattacharya,et al.  Non-periodic finite-element formulation of orbital-free density functional theory , 2006 .

[16]  Cooper,et al.  Synthesis of band and model Hamiltonian theory for hybridizing cerium systems. , 1987, Physical review. B, Condensed matter.

[17]  E. Cancès,et al.  Existence of minimizers for Kohn-Sham models in quantum chemistry , 2009 .

[18]  Hermansson,et al.  Finite-element approach to band-structure analysis. , 1986, Physical review. B, Condensed matter.

[19]  M. Ortiz,et al.  Non-periodic finite-element formulation of Kohn–Sham density functional theory , 2010 .

[20]  Alexander B. Pacheco Introduction to Computational Chemistry , 2011 .

[21]  Masaru Tsukada,et al.  Large-Scale Electronic-Structure Calculations Based on the Adaptive Finite-Element Method , 1998 .

[22]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[23]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[24]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[25]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[26]  G. V. Chester,et al.  Solid State Physics , 2000 .

[27]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[28]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[29]  Reinhold Schneider,et al.  Daubechies wavelets as a basis set for density functional pseudopotential calculations. , 2008, The Journal of chemical physics.

[30]  Toshimasa Ishida,et al.  On the asymptotic behavior of Hartree-Fock orbitals , 1992 .

[31]  J. Pask,et al.  Finite element methods in ab initio electronic structure calculations , 2005 .

[32]  Frank Jensen,et al.  Polarization consistent basis sets. II. Estimating the Kohn-Sham basis set limit , 2002 .

[33]  Tsukada,et al.  Adaptive finite-element method for electronic-structure calculations. , 1996, Physical review. B, Condensed matter.

[34]  Arif Masud,et al.  B-splines and NURBS based finite element methods for Kohn–Sham equations , 2012 .

[35]  P F Batcho Computational method for general multicenter electronic structure calculations. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. XI. Molecular Orbital Theory of NMR Chemical Shifts , 1971 .

[37]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[38]  M. Tsukada,et al.  Electronic-structure calculations based on the finite-element method. , 1995, Physical review. B, Condensed matter.

[39]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[40]  Lihua Shen,et al.  Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh , 2008 .

[41]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[42]  J. A. Gareth Williams,et al.  Photochemistry and Photophysics of Coordination Compounds: Platinum , 2007 .

[43]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[44]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[45]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[46]  G. Scuseria,et al.  A black-box self-consistent field convergence algorithm: One step closer , 2002 .

[47]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[48]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[49]  V. Eyert A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences , 1996 .

[50]  Y. Saad,et al.  Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[52]  Vikram Gavini,et al.  Higher-order adaptive finite-element methods for orbital-free density functional theory , 2012, J. Comput. Phys..

[53]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[54]  Efthimios Kaxiras,et al.  Adaptive-coordinate real-space electronic-structure calculations for atoms, molecules, and solids , 1997 .

[55]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[56]  Jun Fang,et al.  A Kohn-Sham equation solver based on hexahedral finite elements , 2012, J. Comput. Phys..

[57]  Batcho Pf Computational method for general multicenter electronic structure calculations. , 2000 .

[58]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[59]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[60]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[61]  C. Y. Fong,et al.  Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach , 1999, cond-mat/9903313.

[62]  White,et al.  Finite-element method for electronic structure. , 1989, Physical review. B, Condensed matter.

[63]  Michael Ortiz,et al.  Error estimation and adaptive meshing in strongly nonlinear dynamic problems , 1999 .

[64]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[65]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[66]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[67]  Fernando Nogueira,et al.  Transferability of a local pseudopotential based on solid-state electron density , 1996 .

[68]  J. Pask,et al.  Finite-element methods in electronic-structure theory , 2001 .

[69]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[70]  Michael Holst,et al.  Adaptive Finite Element Method for Solving the Exact Kohn-Sham Equation of Density Functional Theory. , 2009, Journal of chemical theory and computation.

[71]  Huajie Chen,et al.  Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model , 2010 .

[72]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[73]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[74]  David R. Bowler,et al.  Recent progress with large‐scale ab initio calculations: the CONQUEST code , 2006 .

[75]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[76]  Aihui Zhou,et al.  Numerical analysis of finite dimensional approximations of Kohn–Sham models , 2011, Adv. Comput. Math..

[77]  John E. Pask,et al.  Classical and enriched finite element formulations for Bloch‐periodic boundary conditions , 2009 .

[78]  Fernando Nogueira,et al.  Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the Atomic Pseudo-potentials Engine , 2008, Comput. Phys. Commun..

[79]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .