Persistence in fluctuating environments for interacting structured populations

[1]  R. May Stability and Complexity in Model Ecosystems , 2019 .

[2]  U. Steiner,et al.  Structured population models: introduction. , 2012, Theoretical population biology.

[3]  S. Schreiber,et al.  Spatial heterogeneity promotes coexistence of rock-paper-scissors metacommunities. , 2012, Theoretical population biology.

[4]  S. Schreiber Persistence for stochastic difference equations: a mini-review , 2011, 1109.5967.

[5]  Joshua R. Nahum,et al.  Evolution of restraint in a structured rock–paper–scissors community , 2011, Proceedings of the National Academy of Sciences.

[6]  Peter L. Ralph,et al.  Stochastic population growth in spatially heterogeneous environments , 2011, Journal of Mathematical Biology.

[7]  Horst R. Thieme,et al.  Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators , 2011 .

[8]  S. Allesina,et al.  A competitive network theory of species diversity , 2011, Proceedings of the National Academy of Sciences.

[9]  Sebastian J Schreiber,et al.  Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence , 2010, Proceedings of the Royal Society B: Biological Sciences.

[10]  Sebastian J. Schreiber,et al.  Persistence in fluctuating environments , 2010, Journal of mathematical biology.

[11]  Sebastian J. Schreiber,et al.  Robust permanence for interacting structured populations , 2010, 1005.4146.

[12]  M. Pollicott Maximal Lyapunov exponents for random matrix products , 2010 .

[13]  G. Webb,et al.  Lyapunov functional and global asymptotic stability for an infection-age model , 2010 .

[14]  Paul L. Salceanu,et al.  Persistence in a discrete-time, stage-structured epidemic model , 2010 .

[15]  Janis Antonovics,et al.  Parasite–grass–forb interactions and rock–paper– scissor dynamics: predicting the effects of the parasitic plant Rhinanthus minor on host plant communities , 2009 .

[16]  Michel Benaïm,et al.  Persistence of structured populations in random environments. , 2009, Theoretical population biology.

[17]  Horst R. Thieme,et al.  Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity , 2009, SIAM J. Appl. Math..

[18]  Paul L. Salceanu,et al.  Lyapunov exponents and persistence in discrete dynamical systems , 2009 .

[19]  Yu Jin,et al.  Spatial Dynamics of a Nonlocal Periodic Reaction-Diffusion Model with Stage Structure , 2009, SIAM J. Math. Anal..

[20]  William H. Sandholm,et al.  Robust permanence and impermanence for stochastic replicator dynamics , 2008, Journal of biological dynamics.

[21]  Robin E. Snyder When does environmental variation most influence species coexistence? , 2008, Theoretical Ecology.

[22]  Andrew Gonzalez,et al.  The inflationary effects of environmental fluctuations ensure the persistence of sink metapopulations. , 2007, Ecology.

[23]  Richard A. Lankau,et al.  Mutual Feedbacks Maintain Both Genetic and Species Diversity in a Plant Community , 2007, Science.

[24]  Robin E. Snyder Spatiotemporal population distributions and their implications for species coexistence in a variable environment. , 2007, Theoretical population biology.

[25]  S. Schreiber On persistence and extinction for randomly perturbed dynamical systems , 2006 .

[26]  Sebastian J Schreiber,et al.  Persistence despite perturbations for interacting populations. , 2006, Journal of theoretical biology.

[27]  A. Hastings,et al.  Persistence of spatial populations depends on returning home. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Boyce,et al.  Demography in an increasingly variable world. , 2006, Trends in ecology & evolution.

[29]  Shripad Tuljapurkar,et al.  Temporal autocorrelation and stochastic population growth. , 2006, Ecology letters.

[30]  M. Pascual,et al.  Competitive coexistence through intermediate polyphagy , 2006 .

[31]  Brian D. Inouye,et al.  SPATIAL HETEROGENEITY EXPLAINS THE SCALE DEPENDENCE OF THE NATIVE-EXOTIC DIVERSITY RELATIONSHIP , 2005 .

[32]  Robert D. Holt,et al.  Temporal Autocorrelation Can Enhance the Persistence and Abundance of Metapopulations Comprised of Coupled Sinks , 2005, The American Naturalist.

[33]  Sebastian J. Schreiber,et al.  From simple rules to cycling in community assembly , 2004 .

[34]  Y. Takeuchi,et al.  Permanence of single-species stage-structured models , 2004, Journal of mathematical biology.

[35]  P. Yodzis,et al.  THE COLOR OF ENVIRONMENTAL NOISE , 2004 .

[36]  Margaret A. Riley,et al.  Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo , 2004, Nature.

[37]  Kenneth A. Schmidt,et al.  Site fidelity in temporally correlated environments enhances population persistence , 2004 .

[38]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations: Cantrell/Diffusion , 2004 .

[39]  P. Amarasekare Competitive coexistence in spatially structured environments: a synthesis , 2003 .

[40]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[41]  A. Ives,et al.  Food web dynamics in correlated and autocorrelated environments. , 2003, Theoretical population biology.

[42]  Michel Loreau,et al.  Community Patterns in Source‐Sink Metacommunities , 2003, The American Naturalist.

[43]  M. Loreau,et al.  Biodiversity as spatial insurance in heterogeneous landscapes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. Arnold Random Dynamical Systems , 2003 .

[45]  Peter Chesson,et al.  Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity , 2003 .

[46]  Andrew Gonzalez,et al.  The inflationary effects of environmental fluctuations in source–sink systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  H. Crauel Random Probability Measures on Polish Spaces , 2002 .

[48]  M. Feldman,et al.  Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors , 2002, Nature.

[49]  J. Bascompte,et al.  Patchy Populations in Stochastic Environments: Critical Number of Patches for Persistence , 2002, The American Naturalist.

[50]  E. Ranta,et al.  Population variability in space and time. , 2000, Trends in ecology & evolution.

[51]  P. Chesson General theory of competitive coexistence in spatially-varying environments. , 2000, Theoretical population biology.

[52]  P. Chesson Mechanisms of Maintenance of Species Diversity , 2000 .

[53]  K. Elworthy RANDOM DYNAMICAL SYSTEMS (Springer Monographs in Mathematics) , 2000 .

[54]  Y. Iwasa,et al.  Species coexistence by permanent spatial heterogeneity in a lottery model. , 2000, Theoretical population biology.

[55]  Owen L. Petchey,et al.  Environmental colour affects aspects of single–species population dynamics , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  Sebastian J. Schreiber,et al.  Criteria for Cr Robust Permanence , 2000 .

[57]  J. Metz,et al.  How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[58]  K Sigmund,et al.  Shaken not stirred: on permanence in ecological communities. , 1998, Theoretical population biology.

[59]  V. Jansen,et al.  Populations can persist in an environment consisting of sink habitats only. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Owen L. Petchey,et al.  Effects on population persistence: the interaction between environmental noise colour, intraspecific competition and space , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  S. Schreiber Generalist and specialist predators that mediate permanence in ecological communities , 1997 .

[62]  C. Wissel,et al.  Extinction risk in a temporally correlated fluctuating environment. , 1997, Theoretical population biology.

[63]  Jim M Cushing,et al.  The effect of periodic habitat fluctuations on a nonlinear insect population model , 1997 .

[64]  Brian Dennis,et al.  Chaotic Dynamics in an Insect Population , 1997, Science.

[65]  B. Sinervo,et al.  The rock–paper–scissors game and the evolution of alternative male strategies , 1996, Nature.

[66]  R. Costantino,et al.  NONLINEAR DEMOGRAPHIC DYNAMICS: MATHEMATICAL MODELS, STATISTICAL METHODS, AND BIOLOGICAL EXPERIMENTS' , 1995 .

[67]  Jeremy S. Collie,et al.  Modeling predator-prey dynamics in a fluctuating environment , 1994 .

[68]  Xiao-Qiang Zhao,et al.  Permanence in Kolmogorov periodic predator-prey models with diffusion , 1994 .

[69]  P. Chesson Multispecies Competition in Variable Environments , 1994 .

[70]  K. Schmitt,et al.  Permanence and the dynamics of biological systems. , 1992, Mathematical biosciences.

[71]  Z. Teng,et al.  Persistence in dynamical systems , 1990 .

[72]  Shripad Tuljapurkar,et al.  Population Dynamics in Variable Environments , 1990 .

[73]  James F. Quinn,et al.  Correlated environments and the persistence of metapopulations , 1989 .

[74]  Josef Hofbauer,et al.  Uniform persistence and repellors for maps , 1989 .

[75]  A. Hastings Food Web Theory and Stability , 1988 .

[76]  Douglas P. Hardin,et al.  Asymptotic properties of a continuous-space discrete-time population model in a random environment , 1988 .

[77]  V. Hutson,et al.  Repellers in reaction–diffusion systems , 1987 .

[78]  O. Diekmann,et al.  The Dynamics of Physiologically Structured Populations , 1986 .

[79]  Peter Chesson,et al.  Coexistence of Competitors in Spatially and Temporally Varying Environments: A Look at the Combined Effects of Different Sorts of Variability , 1985 .

[80]  V. Hutson,et al.  A theorem on average Liapunov functions , 1984 .

[81]  H. I. Freedman,et al.  Persistence in models of three interacting predator-prey populations , 1984 .

[82]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[83]  C. Paquin,et al.  Relative fitness can decrease in evolving asexual populations of S. cerevisiae , 1983, Nature.

[84]  J. Metz,et al.  What are the advantages of dispersing; a paper by Kuno explained and extended , 1983, Oecologia.

[85]  Peter Chesson,et al.  The stabilizing effect of a random environment , 1982 .

[86]  D. Newton AN INTRODUCTION TO ERGODIC THEORY (Graduate Texts in Mathematics, 79) , 1982 .

[87]  Josef Hofbauer,et al.  A general cooperation theorem for hypercycles , 1981 .

[88]  P. Chesson,et al.  Environmental Variability Promotes Coexistence in Lottery Competitive Systems , 1981, The American Naturalist.

[89]  Robert M. May,et al.  The Dynamics of Multiparasitoid-Host Interactions , 1981, The American Naturalist.

[90]  Peter Schuster,et al.  Dynamical systems under constant organiza-tion III: Cooperative and competitive behaviour of hypercy , 1979 .

[91]  D. Ruelle,et al.  Analycity properties of the characteristic exponents of random matrix products , 1979 .

[92]  L. Buss,et al.  Competitive Networks: Nontransitive Competitive Relationships in Cryptic Coral Reef Environments , 1979, The American Naturalist.

[93]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[94]  P. Walters Introduction to Ergodic Theory , 1977 .

[95]  Jonathan Roughgarden,et al.  A Simple Model for Population Dynamics in Stochastic Environments , 1975, The American Naturalist.

[96]  R. May,et al.  Nonlinear Aspects of Competition Between Three Species , 1975 .

[97]  T. Schoener STABILITY AND COMPLEXITY IN MODEL ECOSYSTEMS , 1974 .

[98]  Robert M. May,et al.  Stability in Randomly Fluctuating Versus Deterministic Environments , 1973, The American Naturalist.

[99]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[100]  G. Tullock,et al.  Competitive Exclusion. , 1960, Science.

[101]  Horst R. Thieme,et al.  Dynamical Systems And Population Persistence , 2016 .

[102]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[103]  Paul L. Salceanu,et al.  Lyapunov Exponents and Uniform Weak Normally Repelling Invariant Sets , 2009 .

[104]  Xiao-Qiang Zhao,et al.  A NONLOCAL REACTION-DIFFUSION POPULATION MODEL WITH STAGE STRUCTURE , 2009 .

[105]  Peter Chesson,et al.  Coexistence of annual plants: generalist seed predation weakens the storage effect. , 2009, Ecology.

[106]  Rabi Bhattacharya,et al.  Random Dynamical Systems: Acknowledgment , 2007 .

[107]  Josef Hofbauer,et al.  Robust Permanence and Impermanence for the Stochastic Replicator Dynamic , 2007 .

[108]  Mathew A. Leibold,et al.  Metacommunities: Spatial Dynamics and Ecological Communities , 2005 .

[109]  S. Schreiber Coexistence for species sharing a predator , 2004 .

[110]  Josef Hofbauer,et al.  Robust Permanence for Ecological Differential Equations, Minimax, and Discretizations , 2003, SIAM J. Math. Anal..

[111]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[112]  S. Simons Minimax and monotonicity , 1998 .

[113]  M. Gyllenberg,et al.  Bifurcation analysis of a metapopulation model with sources and sinks , 1996 .

[114]  Lai-Sang Young,et al.  Ergodic Theory of Differentiable Dynamical Systems , 1995 .

[115]  R. Costantino,et al.  Experimentally induced transitions in the dynamic behaviour of insect populations , 1995, Nature.

[116]  H. Caswell Matrix Population Models , 1989 .

[117]  J. Cushing An introduction to structured population dynamics , 1987 .

[118]  J. Roughgarden,et al.  Theory of Population Genetics and Evolutionary Ecology , 1979 .

[119]  R. McGehee,et al.  Some mathematical problems concerning the ecological principle of competitive exclusion , 1977 .

[120]  H. I. Freedman,et al.  Mathematical analysis of some three-species food-chain models , 1977 .