Bivariate survival models induced by frailties

Abstract When two observed survival times depend via a proportional-hazards model on the same unobserved variable, called a frailty, this common dependence induces an association between the observed times. This article considers the class of bivariate survival distributions that can arise in this way, extends it to allow negative association, and shows that the observable bivariate distribution determines the unobserved frailty distribution up to a scale parameter. A cross-ratio function, easily estimated even from censored data, is the key to both the characterization results and inferential procedures and diagnostic plots that are introduced and illustrated by real examples. The models considered are the natural counterpart for survival data of the latent variable models that have long been used in factor analysis for continuous data or in latent structure analysis for binary data. The main distinguishing feature of survival data is the possibility of censoring, which makes the standard methods difficu...

[1]  P. Hougaard Survival models for heterogeneous populations derived from stable distributions , 1986 .

[2]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[3]  D. Oakes,et al.  Semiparametric inference in a model for association in bivanate survival data , 1986 .

[4]  A. E. Maxwell,et al.  Factor Analysis as a Statistical Method. , 1964 .

[5]  E. J. Gumbel,et al.  Some Analytical Properties of Bivariate Extremal Distributions , 1967 .

[6]  W. Haenszel,et al.  Statistical aspects of the analysis of data from retrospective studies of disease. , 1959, Journal of the National Cancer Institute.

[7]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[8]  E. Gumbel Bivariate Logistic Distributions , 1961 .

[9]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[10]  Philip Hougaard,et al.  Life table methods for heterogeneous populations: Distributions describing the heterogeneity , 1984 .

[11]  D. Cox Regression Models and Life-Tables , 1972 .

[12]  D. Cox,et al.  Analysis of Survival Data. , 1985 .

[13]  D. Clayton,et al.  Multivariate generalizations of the proportional hazards model , 1985 .

[14]  David J. Bartholomew The foundations of factor analysis , 1984 .

[15]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[16]  David R. Cox The analysis of binary data , 1970 .

[17]  D. Oakes A Model for Association in Bivariate Survival Data , 1982 .

[18]  J A Hanley,et al.  Nonparametric estimation of a multivariate distribution in the presence of censoring. , 1983, Biometrics.

[19]  Robin Plackett The analysis of categorical data , 1974 .

[20]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[21]  S. Haberman Analysis of qualitative data , 1978 .

[22]  P. Hougaard A class of multivanate failure time distributions , 1986 .

[23]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[24]  Clifford C. Clogg,et al.  The Analysis of Categorical Data (2nd Ed.). , 1983 .

[25]  N. H. Abel Untersuchung der Functionen zweier unabhängig veränderlichen Größen x und y, wie f(x, y), welche die Eigenschaft haben, daß f(z, f (x,y)) eine symmetrische Function von z, x und y ist. , 1826 .

[26]  H. Scheffé The Analysis of Variance , 1960 .