Real-time functional characterization of cationic amino acid transporters using a new FRET sensor

[1]  M. Scalise,et al.  LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. , 2015, The international journal of biochemistry & cell biology.

[2]  C. Henneberger,et al.  Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction , 2015, Protein science : a publication of the Protein Society.

[3]  A. Paradysz,et al.  Dimethylarginines as risk markers of atherosclerosis and chronic kidney disease in children with nephrotic syndrome. , 2015, Advances in clinical and experimental medicine : official organ Wroclaw Medical University.

[4]  Maarten Merkx,et al.  MagFRET: The First Genetically Encoded Fluorescent Mg2+ Sensor , 2013, PloS one.

[5]  Misha V Golynskiy,et al.  Rational design of FRET sensor proteins based on mutually exclusive domain interactions. , 2013, Biochemical Society transactions.

[6]  M. Fromm,et al.  Interaction of the cardiovascular risk marker asymmetric dimethylarginine (ADMA) with the human cationic amino acid transporter 1 (CAT1). , 2012, Journal of molecular and cellular cardiology.

[7]  S. Blankenberg,et al.  Pathogenic Cycle Between the Endogenous Nitric Oxide Synthase Inhibitor Asymmetrical Dimethylarginine and the Leukocyte-Derived Hemoprotein Myeloperoxidase , 2011, Circulation.

[8]  A. Palmer,et al.  Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors , 2011, Proceedings of the National Academy of Sciences.

[9]  A. Carter,et al.  Symmetric dimethylarginine predicts all-cause mortality following ischemic stroke. , 2010, Atherosclerosis.

[10]  Qingbo Xu,et al.  Asymmetric and symmetric dimethylarginines are of similar predictive value for cardiovascular risk in the general population. , 2009, Atherosclerosis.

[11]  G. Beck,et al.  Asymmetric dimethylarginine and mortality in stages 3 to 4 chronic kidney disease. , 2009, Clinical journal of the American Society of Nephrology : CJASN.

[12]  Amy E Palmer,et al.  Genetically Encoded Sensors to Elucidate Spatial Distribution of Cellular Zinc* , 2009, The Journal of Biological Chemistry.

[13]  E. Benjamin,et al.  Plasma Asymmetric Dimethylarginine and Incidence of Cardiovascular Disease and Death in the Community , 2009, Circulation.

[14]  S. Phillips,et al.  Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor L-arginine. , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[15]  L. Looger,et al.  Nanosensor Detection of an Immunoregulatory Tryptophan Influx/Kynurenine Efflux Cycle , 2007, PLoS biology.

[16]  L. Ignarro,et al.  The L-arginine paradox: Importance of the L-arginine/asymmetrical dimethylarginine ratio. , 2007, Pharmacology & therapeutics.

[17]  U. Ludewig,et al.  Visualization of Arginine Influx into Plant Cells Using a Specific FRET-sensor , 2007, Journal of Fluorescence.

[18]  J. Cooke,et al.  Symmetric dimethylarginine (SDMA) as endogenous marker of renal function--a meta-analysis. , 2006, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[19]  S. Morris Arginine: beyond protein. , 2006, The American journal of clinical nutrition.

[20]  L. Looger,et al.  Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  E. Jaimes,et al.  Role of L-arginine in the pathogenesis and treatment of renal disease. , 2004, The Journal of nutrition.

[22]  M. Brosnan,et al.  Renal arginine metabolism. , 2004, The Journal of nutrition.

[23]  M. Palacín,et al.  CATs and HATs: the SLC7 family of amino acid transporters , 2004, Pflügers Archiv.

[24]  Marcus Fehr,et al.  In Vivo Imaging of the Dynamics of Glucose Uptake in the Cytosol of COS-7 Cells by Fluorescent Nanosensors* , 2003, Journal of Biological Chemistry.

[25]  E. Closs,et al.  Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity. , 2002, The Biochemical journal.

[26]  C. Meier,et al.  Activation of system L heterodimeric amino acid exchangers by intracellular substrates , 2002, The EMBO journal.

[27]  S. Wolf,et al.  Human cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral tissues. , 2001, Biochemistry.

[28]  D. A. Godfrey,et al.  Effects of High-Potassium-Induced Depolarization on Amino Acid Chemistry of the Dorsal Cochlear Nucleus in Rat Brain Slices , 2000, Neurochemical Research.

[29]  Guoyao Wu,et al.  Arginine metabolism: nitric oxide and beyond. , 1998, The Biochemical journal.

[30]  U. Förstermann,et al.  Interference of L-arginine analogues with L-arginine transport mediated by the y+ carrier hCAT-2B. , 1997, Nitric oxide : biology and chemistry.

[31]  J. F. Burke,et al.  Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Schousboe,et al.  Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in gabaergic neurons: Vesicular versus non-vesicular release of GABA , 1993, Neuroscience.

[33]  L. Czaplewski,et al.  Sequences required for regulation of arginine biosynthesis promoters are conserved between Bacillus subtilis and Escherichia coli , 1989, Molecular microbiology.

[34]  A. Barbul Arginine: biochemistry, physiology, and therapeutic implications. , 1986, JPEN. Journal of parenteral and enteral nutrition.

[35]  E. Closs,et al.  Structure and Function of Cationic Amino Acid Transporters (CATs) , 2006, The Journal of Membrane Biology.

[36]  S. Baumberg,et al.  Cloning of a Bacillus subtilis restriction fragment complementing auxotrophic mutants of eight Escherichia coli genes of arginine biosynthesis , 2004, Molecular and General Genetics MGG.

[37]  S. Baumberg,et al.  Map locations of some mutations conferring resistance to arginine hydroxamate in Bacillus subtilis 168 , 2004, Molecular and General Genetics MGG.