Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory.

The relationship between the M-species stochastic Lotka-Volterra competition (SLVC) model and the M-allele Moran model of population genetics is explored via timescale separation arguments. When selection for species is weak and the population size is large but finite, precise conditions are determined for the stochastic dynamics of the SLVC model to be mappable to the neutral Moran model, the Moran model with frequency-independent selection, and the Moran model with frequency-dependent selection (equivalently a game-theoretic formulation of the Moran model). We demonstrate how these mappings can be used to calculate extinction probabilities and the times until a species' extinction in the SLVC model.

[1]  J. Roughgarden Theory of Population Genetics and Evolutionary Ecology: An Introduction , 1995 .

[2]  C. Hauert,et al.  Coevolutionary dynamics: from finite to infinite populations. , 2004, Physical review letters.

[3]  M. Nowak Evolutionary Dynamics: Exploring the Equations of Life , 2006 .

[4]  H. Kalmus Biological Cybernetics , 1972, Nature.

[5]  S. Otto,et al.  Frequency-Dependent Selection and the Evolution of Assortative Mating , 2008, Genetics.

[6]  Arne Traulsen,et al.  Emergence of stable polymorphisms driven by evolutionary games between mutants , 2012, Nature Communications.

[7]  B. Meerson,et al.  Extinction of metastable stochastic populations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[9]  Chaitanya S. Gokhale,et al.  Evolutionary games in the multiverse , 2010, Proceedings of the National Academy of Sciences.

[10]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[11]  C. Cockerham,et al.  Effects of mutation on selection limits in finite populations with multiple alleles. , 1989, Genetics.

[12]  M. Handzic 5 , 1824, The Banality of Heidegger.

[13]  P. A. P. Moran,et al.  Random processes in genetics , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Joshua B. Plotkin,et al.  Some Consequences of Demographic Stochasticity in Population Genetics , 2010, Genetics.

[15]  Immanuel M. Bomze,et al.  Lotka-Volterra equation and replicator dynamics: new issues in classification , 1995, Biological Cybernetics.

[16]  Jeffrey E. Barrick,et al.  Adaptation, Clonal Interference, and Frequency-Dependent Interactions in a Long-Term Evolution Experiment with Escherichia coli , 2015, Genetics.

[17]  Yuval R. Zelnik,et al.  Species survival emerge from rare events of individual migration , 2015, Scientific Reports.

[18]  G. McVean,et al.  An introduction to population genetics , 2022 .

[19]  J. Mallet,et al.  The struggle for existence. How the notion of carrying capacity, K, obscures the links between demography, Darwinian evolution and speciation , 2012 .

[20]  R. Pearl Biometrics , 1914, The American Naturalist.

[21]  Tim Rogers,et al.  Stochastic Pattern Formation and Spontaneous Polarisation: The Linear Noise Approximation and Beyond , 2012, Bulletin of mathematical biology.

[22]  Chaitanya S. Gokhale,et al.  Lotka–Volterra dynamics kills the Red Queen: population size fluctuations and associated stochasticity dramatically change host-parasite coevolution , 2013, BMC Evolutionary Biology.

[23]  A. J. McKane,et al.  Stochastic models of evolution in genetics, ecology and linguistics , 2007, cond-mat/0703478.

[24]  George W. A. Constable,et al.  Fast-mode elimination in stochastic metapopulation models. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Tim Rogers,et al.  Demographic noise can reverse the direction of deterministic selection , 2016, Proceedings of the National Academy of Sciences.

[26]  A. Hastings,et al.  Multivariate Moran process with Lotka-Volterra phenomenology. , 2011, Physical review letters.

[27]  George W. A. Constable,et al.  Population genetics on islands connected by an arbitrary network: an analytic approach. , 2014, Journal of theoretical biology.

[28]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[29]  D. Fudenberg,et al.  Emergence of cooperation and evolutionary stability in finite populations , 2004, Nature.

[30]  Motoo Kimura,et al.  Random Genetic Drift in a Tri-Allelic Locus; Exact Solution with a Continuous Model , 1956 .

[31]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[32]  George W. A. Constable,et al.  Models of genetic drift as limiting forms of the Lotka-Volterra competition model. , 2014, Physical review letters.

[33]  M. Kimura RANDOM GENETIC DRIFT IN MULTI‐ALLELIC LOCUS , 1955 .

[34]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[35]  Khachik Sargsyan,et al.  Extinction Times for Birth-Death Processes: Exact Results, Continuum Asymptotics, and the Failure of the Fokker-Planck Approximation , 2004, Multiscale Model. Simul..

[36]  B. M. Fulk MATH , 1992 .

[37]  A. McKane,et al.  Exact solution of the multi-allelic diffusion model. , 2005, Mathematical biosciences.

[38]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[39]  Claus Vogl,et al.  The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates , 2012, Theoretical population biology.

[40]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[41]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[42]  H. Ohtsuki,et al.  Mutation-selection equilibrium in games with multiple strategies. , 2008, Journal of theoretical biology.

[43]  R. Khasminskii,et al.  Long term behavior of solutions of the Lotka-Volterra system under small random perturbations , 2001 .

[44]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[45]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[46]  D. Valenti,et al.  NOISE INDUCED PHENOMENA IN LOTKA-VOLTERRA SYSTEMS , 2003, cond-mat/0310585.

[47]  Josef Hofbauer,et al.  On the occurrence of limit cycles in the Volterra-Lotka equation , 1981 .

[48]  Martin A. Nowak,et al.  Analytical Results for Individual and Group Selection of Any Intensity , 2008, Bulletin of mathematical biology.

[49]  Meike J. Wittmann,et al.  Mathematical Ecology , 2006 .

[50]  Ericka Stricklin-Parker,et al.  Ann , 2005 .