Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine

Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (i.e., proteinopathies) including tauopathies (i.e., FTLD-Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work toward the goal of defining clinical endophenotypes of FTD.

[1]  E. Bigio,et al.  Phosphorylation and cleavage of tau in non-AD tauopathies , 2007, Acta Neuropathologica.

[2]  William T. Hu,et al.  Survival profiles of patients with frontotemporal dementia and motor neuron disease. , 2009, Archives of neurology.

[3]  H. Kretzschmar,et al.  Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease , 2009, Acta Neuropathologica.

[4]  J. Trojanowski,et al.  Imaging of Tau Pathology in a Tauopathy Mouse Model and in Alzheimer Patients Compared to Normal Controls , 2013, Neuron.

[5]  J. Trojanowski,et al.  Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies , 2009, Acta Neuropathologica.

[6]  J. Trojanowski,et al.  Hereditary tauopathies and idiopathic frontotemporal dementias , 2004 .

[7]  J. Trojanowski,et al.  Nitration of tau protein is linked to neurodegeneration in tauopathies. , 2003, The American journal of pathology.

[8]  J. Trojanowski,et al.  Sporadic Pick's disease: A tauopathy characterized by a spectrum of pathological τ isoforms in gray and white matter , 2002, Annals of neurology.

[9]  N. Cairns,et al.  TDP‐43 proteinopathy in familial motor neurone disease with TARDBP A315T mutation: a case report , 2010, Neuropathology and applied neurobiology.

[10]  J. Whitwell,et al.  Neuroimaging in frontotemporal lobar degeneration—predicting molecular pathology , 2012, Nature Reviews Neurology.

[11]  M. Myers,et al.  Characterizing TDP-43 interaction with its RNA targets , 2013, Nucleic acids research.

[12]  J. Trojanowski,et al.  Multimodal predictors for Alzheimer disease in nonfluent primary progressive aphasia , 2010, Neurology.

[13]  L. Grinberg,et al.  Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration , 2014, Annals of neurology.

[14]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[15]  D Harrich,et al.  Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs , 1995, Journal of virology.

[16]  Nick C. Fox,et al.  Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration , 2011, Brain : a journal of neurology.

[17]  J. Trojanowski,et al.  Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia , 2014, Neurology.

[18]  B. Dubois,et al.  C9ORF72 repeat expansions in the frontotemporal dementias spectrum of diseases: a flow-chart for genetic testing. , 2013, Journal of Alzheimer's disease : JAD.

[19]  M. Neumann,et al.  Frontotemporal lobar degeneration and amyotrophic lateral sclerosis: molecular similarities and differences. , 2013, Revue neurologique.

[20]  Chadwick M. Hales,et al.  Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP , 2013, Neurology.

[21]  J. Trojanowski,et al.  Unexpected abundance of pathological tau in progressive supranuclear palsy white matter , 2006, Annals of neurology.

[22]  Kevin F. Bieniek,et al.  Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress , 2014, Acta Neuropathologica.

[23]  John L. Robinson,et al.  Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD) , 2014, Acta Neuropathologica.

[24]  J. Schneider,et al.  Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration , 2007, Acta Neuropathologica.

[25]  D. Dickson,et al.  TDP‐43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease , 2007, Annals of neurology.

[26]  A. Al-Chalabi,et al.  Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.

[27]  Jennifer L. Whitwell,et al.  Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. , 2006, Brain : a journal of neurology.

[28]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[29]  W. Jagust,et al.  Aβ amyloid and glucose metabolism in three variants of primary progressive aphasia , 2008, Annals of neurology.

[30]  S. Lorenzl,et al.  Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations , 2013, Acta Neuropathologica.

[31]  J. Trojanowski,et al.  Biochemical analysis of tau proteins in argyrophilic grain disease, Alzheimer's disease, and Pick's disease : a comparative study. , 2002, The American journal of pathology.

[32]  I Litvan,et al.  Association of an extended haplotype in the tau gene with progressive supranuclear palsy. , 1999, Human molecular genetics.

[33]  M. Grossman,et al.  Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. , 2013, JAMA neurology.

[34]  C. Jack,et al.  Staging TDP-43 pathology in Alzheimer’s disease , 2014, Acta Neuropathologica.

[35]  J. Morris,et al.  HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin‐positive, tau‐negative inclusions caused by a missense mutation in the signal peptide of progranulin , 2006, Annals of neurology.

[36]  David Mann,et al.  Frontotemporal lobar degeneration: clinical and pathological relationships , 2007, Acta Neuropathologica.

[37]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[38]  Murray Grossman,et al.  Comparison of cerebrospinal fluid levels of tau and Aβ 1-42 in Alzheimer disease and frontotemporal degeneration using 2 analytical platforms. , 2012, Archives of neurology.

[39]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[40]  T. Griffiths,et al.  Accumulation of dipeptide repeat proteins predates that of TDP‐43 in frontotemporal lobar degeneration associated with hexanucleotide repeat expansions in C9ORF72 gene , 2015, Neuropathology and applied neurobiology.

[41]  Hideshi Kawakami,et al.  Clinicopathologic features of autosomal recessive amyotrophic lateral sclerosis associated with optineurin mutation , 2014, Neuropathology : official journal of the Japanese Society of Neuropathology.

[42]  William T. Hu,et al.  Phosphorylated tau as a candidate biomarker for amyotrophic lateral sclerosis. , 2014, JAMA neurology.

[43]  John L. Robinson,et al.  Clinical and pathological continuum of multisystem TDP-43 proteinopathies. , 2009, Archives of neurology.

[44]  B. Avants,et al.  Can MRI screen for CSF biomarkers in neurodegenerative disease? , 2013, Neurology.

[45]  K. Sleegers,et al.  TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort , 2011, Brain : a journal of neurology.

[46]  D. Irwin,et al.  C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD , 2014, Acta Neuropathologica.

[47]  P. Hof,et al.  Specific Pathological Tau Protein Variants Characterize Pick's Disease , 1996, Journal of neuropathology and experimental neurology.

[48]  D. Neary,et al.  TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration , 2008, Acta Neuropathologica.

[49]  B. Ghetti,et al.  Brain homogenates from human tauopathies induce tau inclusions in mouse brain , 2013, Proceedings of the National Academy of Sciences.

[50]  Murray Grossman,et al.  Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial , 2013, The Lancet Neurology.

[51]  John Q. Trojanowski,et al.  Abnormal tau phosphorylation at Ser396 in alzheimer's disease recapitulates development and contributes to reduced microtubule binding , 1993, Neuron.

[52]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[53]  D. Geschwind,et al.  Atypical, slowly progressive behavioural variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[54]  J. Trojanowski,et al.  Concomitant TAR-DNA-Binding Protein 43 Pathology Is Present in Alzheimer Disease and Corticobasal Degeneration but Not in Other Tauopathies , 2008, Journal of neuropathology and experimental neurology.

[55]  K. Jellinger,et al.  Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease , 2007, Acta Neuropathologica.

[56]  J. Morris,et al.  Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. , 2011, Archives of neurology.

[57]  M. Bug,et al.  Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system , 2012, Nature Cell Biology.

[58]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[59]  J. Trojanowski,et al.  Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. , 2006, The American journal of pathology.

[60]  P. Lantos,et al.  The spatial patterns of Pick bodies, Pick cells and Alzheimer's disease pathology in Pick's disease , 1999, Neuropathology : official journal of the Japanese Society of Neuropathology.

[61]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[62]  J. Trojanowski,et al.  Brain progranulin expression in GRN-associated frontotemporal lobar degeneration , 2009, Acta Neuropathologica.

[63]  D. Geschwind,et al.  TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers , 2010, Neurology.

[64]  Casey Cook,et al.  Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance , 2013, Human molecular genetics.

[65]  M N Rossor,et al.  Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype , 2001, Neurology.

[66]  Robert V Farese,et al.  Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development , 2013, Alzheimer's & Dementia.

[67]  John L. Robinson,et al.  Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases , 2007, Acta Neuropathologica.

[68]  D. Neary,et al.  The most common type of FTLD-FUS (aFTLD-U) is associated with a distinct clinical form of frontotemporal dementia but is not related to mutations in the FUS gene , 2011, Acta Neuropathologica.

[69]  Nick C Fox,et al.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.

[70]  John L. Robinson,et al.  TDP-43 skeins show properties of amyloid in a subset of ALS cases , 2012, Acta Neuropathologica.

[71]  J. Trojanowski,et al.  TMEM106B, the Risk Gene for Frontotemporal Dementia, Is Regulated by the microRNA-132/212 Cluster and Affects Progranulin Pathways , 2012, The Journal of Neuroscience.

[72]  A. Singleton,et al.  Repeat expansion in C9ORF72 in Alzheimer's disease. , 2012, The New England journal of medicine.

[73]  M. Mesulam,et al.  Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene , 2014, Molecular Neurodegeneration.

[74]  J. Trojanowski,et al.  Novel CSF biomarkers for frontotemporal lobar degenerations , 2010, Alzheimer's & Dementia.

[75]  Robert A. Dean,et al.  Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI , 2011, Acta Neuropathologica.

[76]  D. Neary,et al.  Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. , 2012, Brain : a journal of neurology.

[77]  Min-Ying Su,et al.  Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. , 2014, Journal of Alzheimer's disease : JAD.

[78]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[79]  K. Oyanagi,et al.  Corticobasal degeneration: etiopathological significance of the cytoskeletal alterations , 2004, Acta Neuropathologica.

[80]  B. Avants,et al.  White matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[81]  Jonathan M. Bekisz,et al.  Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[82]  O. Hendrich,et al.  C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins , 2014, Science.

[83]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[84]  P. Calabresi,et al.  Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy , 2008, Neurology.

[85]  J. Trojanowski,et al.  Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2008, The American journal of pathology.

[86]  Virginia M. Y. Lee,et al.  Neurofibrillary tangle‐like tau pathology induced by synthetic tau fibrils in primary neurons over‐expressing mutant tau , 2013, FEBS letters.

[87]  Murray Grossman,et al.  Signature tau neuropathology in gray and white matter of corticobasal degeneration. , 2002, The American journal of pathology.

[88]  Eric Guedj,et al.  Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. , 2008, Brain : a journal of neurology.

[89]  Giovanni Coppola,et al.  Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. , 2014, Brain : a journal of neurology.

[90]  Francisco E. Baralle,et al.  Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator ofCFTR Exon 9* , 2001, The Journal of Biological Chemistry.

[91]  J. Trojanowski,et al.  Assessment of pathological tau proteins in frontotemporal dementias: qualitative and quantitative approaches. , 2004, The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry.

[92]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[93]  J. Trojanowski,et al.  Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-β(1-42) and τ proteins as Alzheimer disease biomarkers. , 2013, Clinical chemistry.

[94]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[95]  S. Murayama,et al.  Staging of Argyrophilic Grains: An Age‐Associated Tauopathy , 2004, Journal of neuropathology and experimental neurology.

[96]  N. Cairns,et al.  Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurodegenerative disease: a comparative study of eight disorders , 2012, Journal of Neural Transmission.

[97]  J. Morris,et al.  TDP‐43 A315T mutation in familial motor neuron disease , 2008, Annals of neurology.

[98]  J. Trojanowski,et al.  Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. , 2014, Bioorganic & medicinal chemistry.

[99]  J. Trojanowski,et al.  Novel monoclonal antibodies to normal and pathologically altered human TDP-43 proteins , 2014, Acta neuropathologica communications.

[100]  K Patterson,et al.  Focal cortical presentations of Alzheimer's disease. , 2007, Brain : a journal of neurology.

[101]  H. Feldman,et al.  Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. , 2012, Brain : a journal of neurology.

[102]  D. Geschwind,et al.  Frontotemporal dementia due to C9ORF72 mutations , 2012, Neurology.

[103]  J. Schneider,et al.  National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease , 2012, Alzheimer's & Dementia.

[104]  A. Guberman,et al.  Substructure of 20 nm filaments of progressive supranuclear palsy , 2004, Acta Neuropathologica.

[105]  David T. Jones,et al.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 , 2012, Brain : a journal of neurology.

[106]  L. Petrucelli,et al.  Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72 , 2013, Acta Neuropathologica Communications.

[107]  Leslie M. Shaw,et al.  Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis: A consensus paper from the Alzheimer's Biomarkers Standardization Initiative , 2012, Alzheimer's & Dementia.

[108]  Y. Pijnenburg,et al.  The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.

[109]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[110]  J. Highley,et al.  Lack of unique neuropathology in amyotrophic lateral sclerosis associated with p.K54E angiogenin (ANG) mutation , 2012, Neuropathology and applied neurobiology.

[111]  K. Blennow,et al.  Development and assessment of sensitive immuno‐PCR assays for the quantification of cerebrospinal fluid three‐ and four‐repeat tau isoforms in tauopathies , 2012, Journal of neurochemistry.

[112]  M. Grossman,et al.  Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier , 2014, Acta Neuropathologica.

[113]  D. Bennett,et al.  TDP-43 pathology, cognitive decline, and dementia in old age. , 2013, JAMA neurology.

[114]  K. Sleegers,et al.  Serum biomarker for progranulin‐associated frontotemporal lobar degeneration , 2009, Annals of neurology.

[115]  Mathias Jucker,et al.  Self-propagation of pathogenic protein aggregates in neurodegenerative diseases , 2013, Nature.

[116]  V. Lee,et al.  Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases , 2014, Nature Medicine.

[117]  E. Bigio,et al.  Tau epitope display in progressive supranuclear palsy and corticobasal degeneration , 2004, Journal of neurocytology.

[118]  J. Trojanowski,et al.  Therapeutic strategies for tau mediated neurodegeneration , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[119]  M. Grossman,et al.  Biomarkers to Identify the Pathological Basis for Frontotemporal Lobar Degeneration , 2011, Journal of Molecular Neuroscience.

[120]  A. Isaacs,et al.  C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci , 2013, Acta Neuropathologica.

[121]  Olaf Ansorge,et al.  FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. , 2011, Brain : a journal of neurology.

[122]  John X. Morris,et al.  Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. , 1998, Science.

[123]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[124]  J. Trojanowski,et al.  A harmonized classification system for FTLD-TDP pathology , 2011, Acta Neuropathologica.

[125]  John L. Robinson,et al.  Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion , 2012, Acta Neuropathologica.

[126]  R. Petersen,et al.  Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects , 2009, Annals of neurology.

[127]  John R. Hodges,et al.  Epidemiology of frontotemporal dementia , 2007 .

[128]  J. Trojanowski,et al.  Developing therapeutic approaches to tau, selected kinases, and related neuronal protein targets. , 2011, Cold Spring Harbor perspectives in medicine.

[129]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[130]  L. Grinberg,et al.  Germline DNA copy number variation in individuals with Argyrophilic grain disease reveals CTNS as a plausible candidate gene , 2013, Genetics and molecular biology.

[131]  S. McKnight,et al.  Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells , 2014, Science.

[132]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[133]  C. Geula,et al.  Inclusions in frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP) and amyotrophic lateral sclerosis (ALS), but not FTLD with FUS proteinopathy (FTLD-FUS), have properties of amyloid , 2013, Acta Neuropathologica.

[134]  P. McColgan,et al.  C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies , 2014, Neurology.

[135]  J. Trojanowski,et al.  Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration , 2011, Nature Reviews Neuroscience.

[136]  E. Huang,et al.  Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation , 2013, Acta Neuropathologica.

[137]  J. Trojanowski,et al.  Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer's disease , 2013, Front. Ag. Neurosci..

[138]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[139]  M. Grossman,et al.  Primary progressive aphasia: clinicopathological correlations , 2010, Nature Reviews Neurology.

[140]  J. Trojanowski,et al.  TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation , 2012, Acta Neuropathologica.

[141]  Manuel V. Hermenegildo,et al.  An Overview of , 2011 .

[142]  E. Huey,et al.  Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72. , 2014, JAMA neurology.

[143]  Janna H. Neltner,et al.  Primary age-related tauopathy (PART): a common pathology associated with human aging , 2014, Acta Neuropathologica.

[144]  M. Grossman,et al.  ALS-Plus syndrome: Non-pyramidal features in a large ALS cohort , 2014, Journal of the Neurological Sciences.

[145]  John Q. Trojanowski,et al.  Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update , 2009, Acta Neuropathologica.

[146]  Dennis W. Dickson,et al.  Neuropathology of Frontotemporal Lobar Degeneration-Tau (FTLD-Tau) , 2011, Journal of Molecular Neuroscience.

[147]  J. Trojanowski,et al.  The acetylation of tau inhibits its function and promotes pathological tau aggregation. , 2011, Nature communications.

[148]  Jennifer Farmer,et al.  Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer's disease , 2005, Annals of neurology.

[149]  C. Jack,et al.  TDP-43 is a key player in the clinical features associated with Alzheimer’s disease , 2014, Acta Neuropathologica.

[150]  John Q. Trojanowski,et al.  Amyotrophic lateral sclerosis—a model of corticofugal axonal spread , 2013, Nature Reviews Neurology.

[151]  D. Mann,et al.  Prion-like properties of pathological TDP-43 aggregates from diseased brains. , 2013, Cell reports.

[152]  Nick C Fox,et al.  A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. , 2011, Brain : a journal of neurology.

[153]  P. Schulz,et al.  Medical and environmental risk factors associated with frontotemporal dementia: A case-control study in a veteran population , 2012, Alzheimer's & Dementia.

[154]  Charles Duyckaerts,et al.  National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach , 2011, Acta Neuropathologica.

[155]  R. Petersen,et al.  Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members , 2009, Brain : a journal of neurology.

[156]  Chou-Chi H. Li,et al.  Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin–proteasome degradation , 2001, Nature Cell Biology.

[157]  Isidro Ferrer,et al.  Argyrophilic grain disease. , 2008, Brain : a journal of neurology.

[158]  M. Freedman,et al.  Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[159]  J. Trojanowski,et al.  Cognitive and motor assessment in autopsy-proven corticobasal degeneration , 2007, Neurology.

[160]  J. Trojanowski,et al.  Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. , 2013, JAMA neurology.

[161]  J. Trojanowski,et al.  Synthetic Tau Fibrils Mediate Transmission of Neurofibrillary Tangles in a Transgenic Mouse Model of Alzheimer's-Like Tauopathy , 2013, The Journal of Neuroscience.

[162]  C. V. van Duijn,et al.  Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case–control study , 2003, Journal of neurology, neurosurgery, and psychiatry.

[163]  D. Knopman,et al.  Overview of dementia lacking distinctive histology: pathological designation of a progressive dementia. , 1993, Dementia.

[164]  J. Growdon,et al.  TAR-DNA Binding Protein 43 in Pick Disease , 2008, Journal of neuropathology and experimental neurology.

[165]  J. Trojanowski,et al.  Topography of FUS pathology distinguishes late-onset BIBD from aFTLD-U , 2013, Acta neuropathologica communications.

[166]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[167]  Giovanni B. Frisoni,et al.  The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers , 2011, Alzheimer's & Dementia.

[168]  J. Morris,et al.  TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. , 2007, The American journal of pathology.

[169]  J. Trojanowski,et al.  Distinct TDP-43 pathology in ALS patients with ataxin 2 intermediate-length polyQ expansions , 2012, Acta Neuropathologica.

[170]  J. Trojanowski,et al.  Clinicopathological correlations in corticobasal degeneration , 2011, Annals of neurology.

[171]  E. Bigio,et al.  Tau truncation during neurofibrillary tangle evolution in Alzheimer's disease , 2005, Neurobiology of Aging.

[172]  W. Paulus ANC: High quality, fast publication, open access , 2013, Acta neuropathologica communications.

[173]  Isidro Ferrer,et al.  Globular glial tauopathies (GGT): consensus recommendations , 2013, Acta Neuropathologica.

[174]  Andrew J. Lees,et al.  Identification of common variants influencing risk of the tauopathy Progressive Supranuclear Palsy , 2011, Nature Genetics.

[175]  J. Gee,et al.  White matter imaging contributes to the multimodal diagnosis of frontotemporal lobar degeneration , 2012, Neurology.

[176]  J. Trojanowski,et al.  Analysis of tau haplotypes in Pick’s disease , 2002, Neurology.

[177]  Brian B. Avants,et al.  Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration , 2014, Neurobiology of Aging.

[178]  J. Hodges,et al.  Clinicopathological correlates in frontotemporal dementia , 2004, Annals of neurology.

[179]  J. Trojanowski,et al.  Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies. , 2012, Brain : a journal of neurology.

[180]  C. Geula,et al.  Asymmetry and heterogeneity of Alzheimer's and frontotemporal pathology in primary progressive aphasia. , 2014, Brain : a journal of neurology.

[181]  K. Blennow,et al.  CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival , 2014, Neurology.

[182]  Mark Hallett,et al.  Criteria for the diagnosis of corticobasal degeneration , 2013, Neurology.

[183]  D. Neary,et al.  Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis , 2011, Neurobiology of Aging.

[184]  Alexander Gerhard,et al.  Frontotemporal dementia and its subtypes: a genome-wide association study , 2014, The Lancet Neurology.

[185]  Murray Grossman,et al.  CSF biomarkers cutoffs: the importance of coincident neuropathological diseases , 2012, Acta Neuropathologica.

[186]  M. Hallett,et al.  Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) , 1996, Neurology.

[187]  H. Feldman,et al.  Clinical and pathological features of familial frontotemporal dementia caused by C 9 ORF 72 mutation on chromosome 9 p , 2012 .

[188]  J. Ávila,et al.  Tau glycation is involved in aggregation of the protein but not in the formation of filaments. , 1998, Cellular and molecular biology.

[189]  J. Trojanowski,et al.  CSF biomarkers in frontotemporal lobar degeneration with known pathology , 2008, Neurology.

[190]  R. Coleman,et al.  Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study , 2012, The Lancet Neurology.

[191]  J. Trojanowski,et al.  Biochemical Analysis of τ Proteins in Argyrophilic Grain Disease, Alzheimer's Disease, and Pick's Disease: A Comparative Study , 2002 .

[192]  P. Lantos,et al.  Immunohistochemistry distinguishes between Pick's disease and corticobasal degeneration , 2000, Journal of neurology, neurosurgery, and psychiatry.

[193]  I. Mackenzie,et al.  Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability , 2014, Acta Neuropathologica.

[194]  M. Luca,et al.  Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy , 2011, Neurology.

[195]  Kevin F. Bieniek,et al.  Expanded C9ORF72 hexanucleotide repeat in depressive pseudodementia. , 2014, JAMA neurology.

[196]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[197]  R. Mayeux,et al.  C9orf72 hexanucleotide repeat expansions in clinical Alzheimer disease. , 2013, JAMA neurology.

[198]  J. Trojanowski,et al.  Acetylated tau neuropathology in sporadic and hereditary tauopathies. , 2013, The American journal of pathology.

[199]  J. Morris,et al.  Neuropathologic Heterogeneity in HDDD1: A Familial Frontotemporal Lobar Degeneration With Ubiquitin-positive Inclusions and Progranulin Mutation , 2007, Alzheimer disease and associated disorders.

[200]  D. Knopman,et al.  Estimating the Number of Persons with Frontotemporal Lobar Degeneration in the US Population , 2011, Journal of Molecular Neuroscience.

[201]  J R Hodges,et al.  The prevalence of frontotemporal dementia , 2002, Neurology.

[202]  P. Lantos,et al.  Laminar distribution of Pick bodies, Pick cells and Alzheimer disease pathology in the frontal and temporal cortex in Pick’s disease , 1999, Neuropathology and applied neurobiology.

[203]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[204]  Patrizia Rizzu,et al.  Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia , 2013, Neurology.

[205]  R. Petersen,et al.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration , 2010, Acta Neuropathologica.

[206]  D. Drachman,et al.  Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia , 2007, Clinical genetics.

[207]  H. Braak,et al.  Are cases with tau pathology occurring in the absence of Aβ deposits part of the AD-related pathological process? , 2014, Acta Neuropathologica.

[208]  N. Fox,et al.  TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions , 2014, Acta Neuropathologica.

[209]  P. Calabresi,et al.  Pattern of Tau forms in CSF is altered in progressive supranuclear palsy , 2009, Neurobiology of Aging.

[210]  L. Ungar,et al.  The power of neuroimaging biomarkers for screening frontotemporal dementia , 2014, Human brain mapping.

[211]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[212]  J. Trojanowski,et al.  TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2008, Archives of neurology.

[213]  Robert V Farese,et al.  The advantages of frontotemporal degeneration drug development (part 2 of frontotemporal degeneration: The next therapeutic frontier) , 2013, Alzheimer's & Dementia.

[214]  Clifford R Jack,et al.  Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial , 2014, The Lancet Neurology.

[215]  Murray Grossman,et al.  Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis , 2013, Annals of neurology.

[216]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[217]  William T. Hu,et al.  Genetic and clinical features of progranulin-associated frontotemporal lobar degeneration. , 2011, Archives of neurology.

[218]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[219]  J. Trojanowski,et al.  Pathological TDP-43 in parkinsonism–dementia complex and amyotrophic lateral sclerosis of Guam , 2007, Acta Neuropathologica.

[220]  Charles D. Smith,et al.  Hippocampal sclerosis in advanced age: clinical and pathological features. , 2011, Brain : a journal of neurology.

[221]  Y. Hirayasu,et al.  Accumulation of phosphorylated TDP-43 in brains of patients with argyrophilic grain disease , 2009, Acta Neuropathologica.

[222]  Jennifer Farmer,et al.  Frontotemporal dementia: Clinicopathological correlations , 2006, Annals of neurology.

[223]  J. Hodges,et al.  Nonprogressive behavioural frontotemporal dementia: recent developments and clinical implications of the 'bvFTD phenocopy syndrome'. , 2010, Current opinion in neurology.

[224]  K. Dewar,et al.  The MAPT H1 haplotype is associated with tangle-predominant dementia , 2012, Acta Neuropathologica.

[225]  S. Ludwin,et al.  Classic and generalized variants of Pick's disease: A clinicopathological, ultrastructural, and immunocytochemical comparative study , 1984, Annals of neurology.

[226]  D. Munoz,et al.  FUS pathology in basophilic inclusion body disease , 2009, Acta Neuropathologica.

[227]  Karalyn Patterson,et al.  Clinical and pathological characterization of progressive aphasia , 2006, Annals of neurology.