Classification of fetal heart rate using grammatical evolution

There is an ongoing effort to develop advanced methods and computer-based systems to assist obstetricians in the difficult task of feature extraction and classification of the cardiotocogram (CTG), which is the most widely used electronic fetal monitoring (EFM) method worldwide. A novel method for feature construction is presented for efficient classification of CTG based on information extracted from fetal heart rate (FHR) signal. The proposed method is based on grammatical evolution in order to construct new features from existing ones using nonlinear transformations. This method is tested on a data set of intrapartum cases achieving accuracy of 92.5%.

[1]  D. Arduini,et al.  COMPUTERIZED ANALYSIS OF FETAL HEART RATE , 1994, Journal of perinatal medicine.

[2]  Conor Ryan,et al.  Grammatical evolution , 2007, GECCO '07.

[3]  G. M. Taylor,et al.  The development and validation of an algorithm for real‐time computerised fetal heart rate monitoring in labour , 2000, BJOG : an international journal of obstetrics and gynaecology.

[4]  J. Wrobel,et al.  Fetal monitoring with automated analysis of cardiotocogram: the Kompor system , 1993, Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ.

[5]  H. Sandmire,et al.  Electronic fetal heart rate monitoring: research guidelines for interpretation. , 1998, American journal of obstetrics and gynecology.

[6]  I. Chalmers,et al.  The Dublin randomized controlled trial of intrapartum fetal heart rate monitoring. , 1985, American journal of obstetrics and gynecology.

[7]  H. Geijn 2 Developments in CTG analysis , 1996 .

[8]  G. Dawes,et al.  Computerized analysis of antepartum fetal heart rate. , 1995, American journal of obstetrics and gynecology.

[9]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[10]  Amparo Alonso-Betanzos,et al.  Intelligent analysis and pattern recognition in cardiotocographic signals using a tightly coupled hybrid system , 2002, Artif. Intell..

[11]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[12]  H. V. van Geijn Developments in CTG analysis. , 1996, Bailliere's clinical obstetrics and gynaecology.

[13]  D. Ayres-de- Campos,et al.  SisPorto 2.0: a program for automated analysis of cardiotocograms. , 2000, The Journal of maternal-fetal medicine.

[14]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[15]  Jonathan M. Garibaldi,et al.  A Fuzzy System for Fetal Heart Rate Assessment , 1999, Fuzzy Days.

[16]  Conor Ryan,et al.  Grammatical Evolution , 2001, Genetic Programming Series.

[17]  J. P. Marques de Sá,et al.  The Porto system for automated cardiotocographic signal analysis , 1991, Journal of perinatal medicine.

[18]  D. Koutsouris,et al.  Computerised intrapartum diagnosis of fetal hypoxia based on fetal heart rate monitoring and fetal pulse oximetry recordings utilising wavelet analysis and neural networks , 2002, BJOG : an international journal of obstetrics and gynaecology.

[19]  J. Parer Handbook of Fetal Heart Rate Monitoring , 1983 .

[20]  K. Maeda 9 Computerized analysis of cardiotocograms and fetal movements , 1990 .

[21]  Sergio Cerutti,et al.  Linear and nonlinear parameters for the analysisof fetal heart rate signal from cardiotocographic recordings , 2003, IEEE Transactions on Biomedical Engineering.

[22]  K. Greene,et al.  ELECTRONIC FETAL HEART RATE MONITORING : RESEARCH GUIDELINES FOR INTERPRETATION. AUTHOR'S REPLY , 1997 .

[23]  K. Maeda Computerized analysis of cardiotocograms and fetal movements. , 1990, Bailliere's clinical obstetrics and gynaecology.

[24]  C.D. Stylios,et al.  Classification of fetal heart rate during labour using hidden Markov models , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[25]  Maria G. Signorini,et al.  Classification of cardiotocographic records by neural networks , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[26]  J. M. Swartjes,et al.  Computer analysis of antepartum fetal heart rate: 1. Baseline determination. , 1990, International journal of bio-medical computing.

[27]  J. M. Swartjes,et al.  Computer analysis of antepartum fetal heart rate: 2. Detection of accelerations and decelerations. , 1990, International journal of bio-medical computing.

[28]  J. Bernardes,et al.  Evaluation of interobserver agreement of cardiotocograms , 1997, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics.

[29]  M. Carter Present‐day performance qualities of cardiotocographs , 1993, British journal of obstetrics and gynaecology.

[30]  Z. J. Yang,et al.  The prediction of fetal acidosis at birth by computerised analysis of intrapartum cardiotocography , 1995, British journal of obstetrics and gynaecology.