Molecular Rydberg states. VII. Water

The optical absorption spectra of H2O and D2O are reported at various pressures for 2000?λ?950 A. The 1670 A band is vibrationally structured (ν2 bend) and the excited 1B1 state contains a considerable intravalence 4a1 component. The 1280 A state 3sa1; 1A1 is linear and dominantly Rydberg. A Renner–Teller analysis of the 1280 A band leads to detection of a perturbing state at 1365 A which may be assigned as a bent, heavily Rydberg 3sa1; 1B1 state. A reanalysis of K‐shell excitation spectra bolsters this 3sa1; 1B1 assignment. Isotope shift studies in the 1130–980 A region lead to some vibronic reassignments. The terminal state of the 968 A absorption band is a linear 5sa1; 1A1 state. In sum, a total of 21 electronic states, comprising fragments of six Rydberg series, have been assigned.

[1]  J. Rabalais Principles of ultraviolet photoelectron spectroscopy , 1977 .

[2]  G. Möhlmann,et al.  The rotational excitation and population distribution of OH(A2Σ+) produced by electron impact on water , 1976 .

[3]  G. Duxbury,et al.  Ro-vibronic structure in the photoelectron spectra of H2O, D2O and HDO , 1976 .

[4]  S. Tsurubuchi Correlation diagrams for electronic states of H2O and fragment species , 1975 .

[5]  A. Chutjian,et al.  Electron‐impact excitation of H2O and D2O at various scattering angles and impact energies in the energy‐loss range 4.2–12 eV , 1975 .

[6]  D. Spence,et al.  Feshbach resonances associated with Rydberg states of the hydrogen halides , 1975 .

[7]  R. G. Albridge,et al.  Isotopic and vibronic coupling effects in the valence electron spectra of H2 16O, H2 18O, and D2 16O , 1975 .

[8]  W. Goddard,et al.  Configuration interaction studies of the excited states of water , 1975 .

[9]  J. Simons,et al.  Polarised photofluorescence excitation spectroscopy: A new technique for the study of molecular photodissociation. Photolysis of H2O in the vacuum ultraviolet , 1975 .

[10]  T. B. Truong,et al.  On the low-lying triplet of the water molecule and its luminescent decay , 1974 .

[11]  S. Peyerimhoff,et al.  Calculations on the electronic spectrum of water , 1974 .

[12]  R. Hall,et al.  Dissociative electron attachment in H2O and D2O: energy and angular distribution of H- and D- fragments , 1974 .

[13]  E. N. Lassettre,et al.  Negative ion contamination of electron impact spectra , 1974 .

[14]  V. McKoy,et al.  Assignments in the electronic spectrum of water , 1974 .

[15]  F. Flouquet,et al.  Ab initio study of the potential energy surface of the B̃ 1A1 excited state of H2O , 1974 .

[16]  W. Goddard,et al.  The Rydberg Nature And Assignments Of Excited States Of The Water Molecule , 1974 .

[17]  C. E. Brion,et al.  K-shell excitation of CH4, NH3, H2O, CH3OH, CH3OCH3 and CH3NH2 by 2.5 keV electron impact , 1974 .

[18]  Melvin B. Robin,et al.  Higher excited states of polyatomic molecules , 1974 .

[19]  R. E. Huffman,et al.  Absorption and photoionization cross sections for H2O and D2O in the vacuum ultraviolet , 1973 .

[20]  A. Kuppermann,et al.  Electron impact excitation of H2O , 1973 .

[21]  A. Douglas,et al.  The Electronic Spectrum of HF. I. The B1Σ+–X1Σ+ Band System , 1973 .

[22]  高柳 和夫 L. G. Christophorou: Atomic and Molecular Radiation Physics, Wiley-Interscience, London, New York, Sydney and Toronto, 1971, x+672頁, 15×23cm, 11,600円. , 1972 .

[23]  A. W. Potts,et al.  Photoelectron spectra and valence shell orbital structures of groups V and VI hydrides , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  H. Brongersma,et al.  Triplet excitation of water and methanol by low-energy electron-impact spectroscopy , 1972 .

[25]  J. Rabalais,et al.  Comments on the high resolution photoelectron spectrum of H2O and D2O , 1971 .

[26]  G. Segal,et al.  Theoretical Interpretation of the Optical and Electron Scattering Spectra of H2O , 1971 .

[27]  J. Johns Inertial Defect and Geometry of H2O in the State , 1971 .

[28]  A. Kuppermann,et al.  Detection and Identification of Triplet States of H2O by Electron Impact , 1971 .

[29]  L. Christophorou,et al.  Atomic and Molecular Radiation Physics , 1971 .

[30]  I. Shavitt,et al.  Comparison of slater and contracted gaussian basis sets in SCF and CI calculations on H2O , 1970 .

[31]  M. Krauss,et al.  Energy Surface and Generalized Oscillator Strength of the 1A , 1969 .

[32]  D. W. Turner,et al.  High resolution molecular photoelectron spectroscopy II. Water and deuterium oxide , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  E. N. Lassettre,et al.  HIGH-RESOLUTION STUDY OF ELECTRON-IMPACT SPECTRA AT KINETIC ENERGIES BETWEEN 33 AND 100 eV AND SCATTERING ANGLES TO 16--. , 1968 .

[34]  P. W. Reinhardt,et al.  THRESHOLD ELECTRON IMPACT EXCITATION OF ATOMS AND MOLECULES: DETECTION OF TRIPLET AND TEMPORARY NEGATIVE ION STATES. , 1968 .

[35]  K. Beyer,et al.  Photodissoziationen zu elektronisch angeregten Bruchstücken von H2, H2O und NH3 im extremen Vakuum-UV. II , 1967 .

[36]  F. Stuhl,et al.  Energy Distribution in the Photodissociation H2O→H(12S) +OH(X2II) , 1967 .

[37]  D. G. Carroll,et al.  Electronic Spectra and Structure of Sulfur Compounds , 1966 .

[38]  E. N. Lassettre,et al.  Intensity Variation with Scattering Angle of Electronic Transitions in H2O Excited by Electron Impact , 1966 .

[39]  G. Herzberg,et al.  Molecular spectra and molecular structure. Vol.3: Electronic spectra and electronic structure of polyatomic molecules , 1966 .

[40]  A. Laufer,et al.  DEUTERIUM ISOTOPE EFFECT IN VACUUM-ULTRAVIOLET ABSORPTION COEFFICIENTS OF WATER AND METHANE , 1965 .

[41]  E. N. Lassettre,et al.  Relative Intensities of Two Rydberg Transitions in the Electron‐Impact Spectrum of Water , 1965 .

[42]  S. Bell The spectra of H2O and D2O in the vacuum ultraviolet , 1965 .

[43]  E. N. Lassettre,et al.  ELECTRON-IMPACT SPECTRA , 1965 .

[44]  T. Carrington Angular Momentum Distribution and Emission Spectrum of OH (2Σ+) in the Photodissociation of H2O , 1964 .

[45]  A. S. Jursa,et al.  Absorption and Photoionization Cross Sections of H2O and H2S , 1964 .

[46]  J. Johns ON THE ABSORPTION SPECTRUM OF H2O AND D2O IN THE VACUUM ULTRAVIOLET , 1963 .

[47]  A. Walsh THE ELECTRONIC SPECTRA OF SIMPLE MOLECULES , 1962 .

[48]  T. Carrington,et al.  Photon‐Dissociation of Water: Initial Nonequilibrium Populations of Rotational States of OH(2Σ+) , 1961 .

[49]  R. F. Barrow,et al.  THE V(1Σ+)—N(1Σ+) TRANSITION OF HYDROGEN BROMIDE , 1961 .

[50]  G. Schulz Excitation and Negative Ions in H2O , 1960 .

[51]  R. F. Barrow,et al.  The Transition V1σ+ - X1σ+ in Hydrogen Chloride , 1959 .

[52]  M. Otsuka,et al.  Radiative Collisions between Electronic and Molecular Beams I. Angular Momentum Distribution among OH* Radicals resulting from H2O Molecules , 1956 .

[53]  M. Otsuka,et al.  Abnormal Rotation in Radiative Collision of Electrons with Water Molecules , 1956 .

[54]  K. Watanabe,et al.  Absorption Coefficients of Water Vapor in the Vacuum Ultraviolet , 1953 .

[55]  Herrick L. Johnston,et al.  The Absorption Spectra of Methane, Carbon Dioxide, Water Vapor, and Ethylene in the Vacuum Ultraviolet , 1950 .

[56]  G. Herzberg,et al.  Infrared and Raman spectra of polyatomic molecules , 1946 .

[57]  R. S. Mulliken Electronic Structures of Polyatomic Molecules. VII. Ammonia and Water Type Molecules and Their Derivatives , 1935 .

[58]  G. Rathenau Untersuchung am Absorptionsspektrum von Wasserdampf und Kohlendioxyd im Gebiet unter 2000 Å , 1934 .

[59]  H. Henning Die Absorptionsspektren von Kohlendioxyd, Kohlenmonoxyd und Wasserdampf im Gebiet von 600-900 ÅE , 1932 .