Fuzzy and crisp clustering methods based on the neighborhood concept: A comprehensive review

The aim of this paper has twofold: i to explore the fundamental concepts and methods of neighborhood-based cluster analysis with its roots in statistics and decision theory, ii to provide a compact tool for researchers. Since DBSCAN is the first method which uses the concept of neighborhood and it has many successors, we started our discussion by exploring it. Then we compared some of the successors of DBSCAN algorithm and other crisp and fuzzy methods on the basis of neighborhood strategy.

[1]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[2]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[3]  Lian Duan,et al.  A Local Density Based Spatial Clustering Algorithm with Noise , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[4]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[5]  Witold Pedrycz,et al.  An Introduction to Fuzzy Sets , 1998 .

[6]  Hans-Peter Kriegel,et al.  Density-based clustering of uncertain data , 2005, KDD '05.

[7]  Anthony K. H. Tung,et al.  Spatial clustering methods in data mining : A survey , 2001 .

[8]  Hans-Peter Kriegel,et al.  DBDC: Density Based Distributed Clustering , 2004, EDBT.

[9]  胡运发,et al.  Approaches for Scaling DBSCAN Algorithm to Large Spatial Databases , 2000 .

[10]  Francisco Herrera,et al.  A greedy randomized adaptive search procedure applied to the clustering problem as an initialization process using K-Means as a local search procedure , 2002, J. Intell. Fuzzy Syst..

[11]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[12]  Jonathon K. Parker,et al.  Footprint generation using fuzzy-neighborhood clustering , 2013, GeoInformatica.

[13]  Kayhan Erciyes,et al.  Clustering based distributed phylogenetic tree construction , 2012, Expert Syst. Appl..

[14]  E. Nasibov,et al.  Influence of transitive closure complexity in FJP-based clustering algorithms , 2010 .

[15]  Efendi N. Nasibov,et al.  Comparative clustering analysis of bispectral index series of brain activity , 2010, Expert Syst. Appl..

[16]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[17]  Efendi N. Nasibov,et al.  A new unsupervised approach for fuzzy clustering , 2007, Fuzzy Sets Syst..

[18]  Lida Xu,et al.  A local-density based spatial clustering algorithm with noise , 2007, Inf. Syst..

[19]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[20]  Hans-Peter Kriegel,et al.  Scalable Density-Based Distributed Clustering , 2004, PKDD.

[21]  Sadaaki Miyamoto,et al.  Classification and clustering of information objects based on fuzzy neighborhood system , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[22]  John F. Roddick,et al.  Survey of Spatio-Temporal Databases , 1999, GeoInformatica.

[23]  Jiawei Han,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[24]  Efendi N. Nasibov,et al.  Robustness of density-based clustering methods with various neighborhood relations , 2009, Fuzzy Sets Syst..

[25]  Abraham Kandel,et al.  Scalable fuzzy neighborhood DBSCAN , 2010, International Conference on Fuzzy Systems.

[26]  M. Özgören,et al.  On the analysis of BIS stage epochs via fuzzy clustering , 2010, Biomedizinische Technik. Biomedical engineering.

[27]  Lawrence O. Hall,et al.  A Scalable Framework For Segmenting Magnetic Resonance Images , 2009, J. Signal Process. Syst..

[28]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[29]  Cao Jing,et al.  Approaches for scaling DBSCAN algorithm to large spatial databases , 2000 .

[30]  N. Ozkurt,et al.  Segmentation of MS plagues in MR images using fuzzy logic tecniques , 2008, 2008 IEEE 16th Signal Processing, Communication and Applications Conference.

[31]  Ching-Hsue Cheng,et al.  An entropy clustering analysis based on genetic algorithm , 2008, J. Intell. Fuzzy Syst..

[32]  Brian Everitt,et al.  Cluster analysis , 1974 .