van der Waals oxide heteroepitaxy for soft transparent electronics.

The quest for multifunctional, low-power and environment friendly electronics has brought research on materials to the forefront. For instance, as the emerging field of transparent flexible electronics is set to greatly impact our daily lives, more stringent requirements are being imposed on functional materials. Inherently flexible polymers and metal foil templates have yielded limited success due to their incompatible high-temperature growth and non-transparency, respectively. Although the epitaxial-transfer strategy has shown promising results, it suffers from tedious and complicated lift-off-transfer processes. The advent of graphene, in particular, and 2D layered materials, in general, with ultrathin scalability has revolutionized this field. Herein, we review the direct growth of epitaxial functional oxides on flexible transparent mica substrates via van der Waals heteroepitaxy, which mitigates misfit strain and substrate clamping for soft transparent electronics applications. Recent advances in practical applications of flexible and transparent electronic elements are discussed. Finally, several important directions, challenges and perspectives for commercialization are also outlined. We anticipate that this promising strategy to build transparent flexible optoelectronic devices and improve their performance will open up new avenues for researchers to explore.

[1]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[2]  Ying-Hao Chu Van der Waals oxide heteroepitaxy , 2017 .

[3]  Ju Gao,et al.  Mechanically Tunable Magnetic Properties of Flexible SrRuO3 Epitaxial Thin Films on Mica Substrates , 2018 .

[4]  Yanqiang Cao,et al.  Flexible Metal-Insulator Transitions Based on van der Waals Oxide Heterostructures. , 2019, ACS applied materials & interfaces.

[5]  Muhammad M. Hussain,et al.  CMOS‐Technology‐Enabled Flexible and Stretchable Electronics for Internet of Everything Applications , 2016, Advanced materials.

[6]  Xierong Zeng,et al.  Epitaxial ultrathin Au films on transparent mica with oxide wetting layer applied to organic light-emitting devices , 2019, Applied Physics Letters.

[7]  Kazuki Yoshimura,et al.  Ultrasharp interfaces grown with Van der Waals epitaxy , 1986 .

[8]  Jing Wang,et al.  High-Quality AZO/Au/AZO Sandwich Film with Ultralow Optical Loss and Resistivity for Transparent Flexible Electrodes. , 2018, ACS applied materials & interfaces.

[9]  Zhi-guo Liu,et al.  Flexible PbZr0.52Ti0.48O3 Capacitors with Giant Piezoelectric Response and Dielectric Tunability , 2017 .

[10]  Chun-Fu Chang,et al.  Mechanical Modulation of Colossal Magnetoresistance in Flexible Epitaxial Perovskite Manganite , 2020, Advanced Functional Materials.

[11]  X. Lou,et al.  Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature , 2019, Nano Energy.

[12]  Jared M. Johnson,et al.  Remote epitaxy through graphene enables two-dimensional material-based layer transfer , 2017, Nature.

[13]  J. J. Wang,et al.  Mechanically controllable nonlinear dielectrics , 2020, Science Advances.

[14]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[15]  J. Israelachvili,et al.  Van der Waals Epitaxial Growth of α-Alumina Nanocrystals on Mica , 1993, Science.

[16]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[17]  W. Appel,et al.  A New Fabrication and Assembly Process for Ultrathin Chips , 2009, IEEE Transactions on Electron Devices.

[18]  Hong Wang,et al.  Mechanical Strain‐Tunable Microwave Magnetism in Flexible CuFe2O4 Epitaxial Thin Film for Wearable Sensors , 2018 .

[19]  Lang Chen,et al.  Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices. , 2016, ACS applied materials & interfaces.

[20]  Kazumasa Sunouchi,et al.  Fabrication and characterization of heterostructures with subnanometer thickness , 1984 .

[21]  Guoliang Yuan,et al.  All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica , 2018 .

[22]  D. Su,et al.  Flexible Heteroepitaxy of CoFe2O4/Muscovite Bimorph with Large Magnetostriction. , 2017, ACS applied materials & interfaces.

[23]  L. Kourkoutis,et al.  Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. , 2016, Nature materials.

[24]  Chun-Wei Huang,et al.  Flexible Heteroepitaxy Photoelectrode for Photo-electrochemical Water Splitting , 2018, ACS Applied Energy Materials.

[25]  Y. Chu,et al.  A Fabrication and Measurement Method for a Flexible Ferroelectric Element Based on Van Der Waals Heteroepitaxy. , 2018, Journal of visualized experiments : JoVE.

[26]  E. Tsymbal,et al.  Freestanding crystalline oxide perovskites down to the monolayer limit , 2019, Nature.

[27]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[28]  G. Yuan,et al.  An All‐Inorganic, Transparent, Flexible, and Nonvolatile Resistive Memory , 2018, Advanced Electronic Materials.

[29]  K. Kwok,et al.  Mechanically controlled reversible photoluminescence response in all-inorganic flexible transparent ferroelectric/mica heterostructures , 2019, NPG Asia Materials.

[30]  Jiangyu Li,et al.  Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate , 2019, Nano Energy.

[31]  K. Ueno,et al.  Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica , 1990 .

[32]  Rongming Wang,et al.  Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications , 2017 .

[33]  Chun-Fu Chang,et al.  Heteroepitaxy of Fe3O4/Muscovite: A New Perspective for Flexible Spintronics. , 2016, ACS applied materials & interfaces.

[34]  Xierong Zeng,et al.  Large photoelectrochemical activity of flexible TiO2/SrRuO3 oxide heterojunction , 2020 .

[35]  Junling Wang,et al.  Transparent, flexible, fatigue-free, optical-read and non-volatile ferroelectric memories. , 2019, ACS applied materials & interfaces.

[36]  Yanbin Wang,et al.  AZO/Ag/AZO transparent flexible electrodes on mica substrates for high temperature application , 2017 .

[37]  J. Arbiol,et al.  Twinning‐, Polytypism‐, and Polarity‐Induced Morphological Modulation in Nonplanar Nanostructures with van der Waals Epitaxy , 2013 .

[38]  Yu-Lun Chueh,et al.  Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor , 2019, Nano Energy.

[39]  Yugandhar Bitla,et al.  MICAtronics: A new platform for flexible X-tronics , 2017 .

[40]  D. Tsai,et al.  Transparent Antiradiative Ferroelectric Heterostructure Based on Flexible Oxide Heteroepitaxy. , 2018, ACS applied materials & interfaces.

[41]  K. Harris,et al.  Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies , 2016, Journal of Materials Science.

[42]  J. Rogers Materials for semiconductor devices that can bend, fold, twist, and stretch , 2014 .

[43]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[44]  Lin Sun,et al.  Ultra-flat ITO films on mica for high temperature transparent flexible electrodes , 2020 .

[45]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[46]  D. Fong,et al.  Single-Crystalline SrRuO3 Nanomembranes: A Platform for Flexible Oxide Electronics. , 2016, Nano letters.

[47]  Asif Islam Khan,et al.  Single crystal functional oxides on silicon , 2015, Nature Communications.

[48]  Dewei Xu,et al.  High-performance flexible thin-film transistors exfoliated from bulk wafer. , 2012, Nano letters.

[49]  Y. Chu,et al.  Development of oxide heteroepitaxy for soft technology , 2018 .

[50]  Zhongshuai Liang,et al.  Flexible Lead-Free BaTiO3 Ferroelectric Elements With High Performance , 2019, IEEE Electron Device Letters.

[51]  Meilin Liu,et al.  Epitaxial Lift‐Off of Centimeter‐Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics , 2017, Advanced materials.

[52]  Yaohua Jiang,et al.  Van der Waals Heteroepitaxial VO2/Mica Films with Extremely Low Optical Trigger Threshold and Large THz Field Modulation Depth , 2019, Advanced Optical Materials.

[53]  Chunrui Ma,et al.  A Strategy to Modulate the Bending Coupled Microwave Magnetism in Nanoscale Epitaxial Lithium Ferrite for Flexible Spintronic Devices , 2018, Advanced science.

[54]  van der Waals epitaxy of Al-doped ZnO film on mica as a flexible transparent heater with ultrafast thermal response , 2018 .

[55]  Cheng Yang,et al.  A flexible and high temperature tolerant strain sensor of La0.7Sr0.3MnO3/Mica , 2020 .

[56]  Y. Chu,et al.  Enhanced Ferroelectric Functionality in Flexible Lead Zirconate Titanate Films with In Situ Substrate‐Clamping Compensation , 2019, Advanced Electronic Materials.

[57]  Ming Liu,et al.  Highly Stable In-Plane Microwave Magnetism in Flexible Li0.35Zn0.3Fe2.35O4(111) Epitaxial Thin Films for Wearable Devices. , 2018, ACS applied materials & interfaces.

[58]  J. W. Matthews Growth of Face-Centered-Cubic Metals on Sodium Chloride Substrates , 1966 .

[59]  Changhong Yang,et al.  Fatigue‐Free and Bending‐Endurable Flexible Mn‐Doped Na0.5Bi0.5TiO3‐BaTiO3‐BiFeO3 Film Capacitor with an Ultrahigh Energy Storage Performance , 2019, Advanced Energy Materials.

[60]  H. Bai,et al.  Flexible Fe3O4/BiFeO3 multiferroic heterostructures with uniaxial strain control of exchange bias , 2019, Journal of Magnetism and Magnetic Materials.

[61]  Wei Liu,et al.  High optical transmittance and anomalous electronic transport in flexible transparent conducting oxides Ba0.96La0.04SnO3 thin films , 2018, Ceramics International.

[62]  P. Xiang,et al.  Proton‐Mediated Phase Control in Flexible and Transparent Mott Transistors , 2019, Advanced Electronic Materials.

[63]  C. Felser,et al.  Heteroepitaxy of Co-based Heusler compound/muscovite for flexible spintronics. , 2019, ACS applied materials & interfaces.

[64]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[65]  Y. Chu,et al.  van der Waals heteroepitaxy on muscovite , 2019, Materials Chemistry and Physics.

[66]  W. Tong,et al.  Isotropic magnetoresistance and enhancement of ferromagnetism through repetitious bending moments in flexible perovskite manganite thin film , 2019, Journal of Alloys and Compounds.

[67]  Yan-ping Jiang,et al.  Analog-type resistive switching behavior of Au/HfO2/ZnO memristor fabricated on flexible Mica substrate , 2020 .

[68]  P. Chiu,et al.  Flexible ferroelectric element based on van der Waals heteroepitaxy , 2017, Science Advances.

[69]  Po-Wen Chiu,et al.  van der Waal Epitaxy of Flexible and Transparent VO2 Film on Muscovite , 2016 .

[70]  Jiangyu Li,et al.  Muscovite mica as a universal platform for flexible electronics , 2020 .

[71]  J. Arbiol,et al.  Incommensurate van der Waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates. , 2012, Nano letters.

[72]  Jianhui Zhao,et al.  Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates , 2018, Nano Research.

[73]  Lianmao Peng,et al.  Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils , 2015, Nature Communications.

[74]  Changhong Yang,et al.  Flexible Lead‐Free Perovskite Oxide Multilayer Film Capacitor Based on (Na0.8K0.2)0.5Bi0.5TiO3/Ba0.5Sr0.5(Ti0.97Mn0.03)O3 for High‐Performance Dielectric Energy Storage , 2020, Advanced Energy Materials.

[75]  Jiangyu Li,et al.  Highly Robust Flexible Ferroelectric Field Effect Transistors Operable at High Temperature with Low‐Power Consumption , 2019, Advanced Functional Materials.

[76]  Chunrui Ma,et al.  Integration of Both Invariable and Tunable Microwave Magnetisms in a Single Flexible La0.67Sr0.33MnO3 Thin Film. , 2019, ACS applied materials & interfaces.

[77]  G. Yuan,et al.  Photovoltaic, photo-impedance, and photo-capacitance effects of the flexible (111) BiFeO3 film , 2019, Applied Physics Letters.

[78]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[79]  Z. Suo,et al.  Mechanics of rollable and foldable film-on-foil electronics , 1999 .

[80]  M. Yoshimoto,et al.  van der Waals epitaxy of ferroelectric ε-gallium oxide thin film on flexible synthetic mica , 2020, Japanese Journal of Applied Physics.

[81]  D. Tsai,et al.  Oxide Heteroepitaxy Based Flexible Ferroelectric Transistor. , 2019, ACS applied materials & interfaces.

[82]  S. Ray,et al.  Facile and time-resolved chemical growth of nanoporous CaxCoO2 thin films for flexible and thermoelectric applications , 2019, 1904.03284.

[83]  L. Gong,et al.  Highly transparent, all-oxide, heteroepitaxy ferroelectric thin film for flexible electronic devices , 2018, Applied Surface Science.

[84]  P. Lv,et al.  Flexible lead-free BFO-based dielectric capacitor with large energy density, superior thermal stability, and reliable bending endurance , 2020, Journal of Materiomics.

[85]  Y. Chu,et al.  Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate , 2019 .

[86]  Lang Chen,et al.  Flexible, Fatigue-Free, and Large-Scale Bi3.25La0.75Ti3O12 Ferroelectric Memories. , 2018, ACS applied materials & interfaces.

[87]  K. Ueno,et al.  Heteroepitaxial growth by Van der Waals interaction in one-, two- and three-dimensional materials , 1991 .

[88]  G. Fang,et al.  Pulsed Laser Deposition Assisted van der Waals Epitaxial Large Area Quasi‐2D ZnO Single‐Crystal Plates on Fluorophlogopite Mica , 2019, Advanced Materials Interfaces.

[89]  S. Ray,et al.  Rapid growth of fully-inorganic flexible CaxCoO2 thin films from a ligand free aqueous precursor ink for thermoelectric applications. , 2019, Chemical communications.

[90]  Zhong Lin Wang,et al.  High temperature processed ZnO nanorods using flexible and transparent mica substrates for dye-sensitized solar cells and piezoelectric nanogenerators , 2014 .

[91]  Jiyoung Oh,et al.  Flexible nonvolatile organic ferroelectric memory transistors fabricated on polydimethylsiloxane elastomer , 2015 .

[92]  P. Chiu,et al.  Oxide Heteroepitaxy for Flexible Optoelectronics. , 2016, ACS applied materials & interfaces.

[93]  B. Wang,et al.  Buckle delamination of textured TiO2 thin films on mica , 2005 .

[94]  R. P. Drake,et al.  Laboratory analogue of a supersonic accretion column in a binary star system , 2016, Nature Communications.

[95]  Changhong Yang,et al.  Towards Multifunctional Electronics: Flexible NBT-Based Film with Large Electrocaloric Effect and High Energy Storage Property. , 2020, ACS applied materials & interfaces.

[96]  R. Peng,et al.  Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness , 2016 .

[97]  J. Arbiol,et al.  Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. , 2013, Nanoscale.

[98]  Long-qing Chen,et al.  Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy. , 2017, ACS nano.

[99]  Y. Chu,et al.  Epitaxial Yttria-Stabilized Zirconia on Muscovite for Flexible Transparent Ionic Conductors , 2018, ACS Applied Nano Materials.

[100]  Guibin Zan,et al.  Free-standing SWNTs/VO2/Mica hierarchical films for high-performance thermochromic devices , 2017 .

[101]  Y. Chu,et al.  Development of magnetoelectric nanocomposite for soft technology , 2018 .

[102]  Qingyu Xu,et al.  Martensitic transformation and large exchange bias in Mn-rich Ni–Mn–Sn thin films on mica substrates , 2020, Journal of Alloys and Compounds.

[103]  Chunrui Ma,et al.  Recent progress on flexible inorganic single-crystalline functional oxide films for advanced electronics , 2019, Materials Horizons.

[104]  Qingyu Xu,et al.  The preparation of flexible Ni-Mn-In thin films on mica substrates by pulsed laser deposition , 2019, Journal of Magnetism and Magnetic Materials.

[105]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[106]  Xierong Zeng,et al.  Flexible TiO2/Au thin films with greatly enhanced photocurrents for photoelectrochemical water splitting , 2020 .

[107]  Jiangyu Li,et al.  Giant Resistivity Change of Transparent ZnO/muscovite Heteroepitaxy. , 2020, ACS applied materials & interfaces.

[108]  A. Koma Van der Waals epitaxy for highly lattice-mismatched systems , 1999 .

[109]  Brian S. Mitchell,et al.  An Introduction to Materials Engineering and Science , 2003 .

[110]  Chun-Fu Chang,et al.  Mechanically tunable exchange coupling of Co/CoO bilayers on flexible muscovite substrates. , 2020, Nanoscale.

[111]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[112]  Ming Zheng,et al.  van der Waals epitaxy for highly tunable all-inorganic transparent flexible ferroelectric luminescent films , 2019, Journal of Materials Chemistry C.

[113]  Michel Bruel,et al.  Application of hydrogen ion beams to Silicon On Insulator material technology , 1996 .

[114]  P. Xiang,et al.  Hydrogenation Dynamics of Electrically Controlled Metal–Insulator Transition in Proton‐Gated Transparent and Flexible WO3 Transistors , 2019, Advanced Functional Materials.

[115]  Haiyan Wang,et al.  Multifunctional La0.67Sr0.33MnO3 (LSMO) Thin Films Integrated on Mica Substrates toward Flexible Spintronics and Electronics. , 2018, ACS applied materials & interfaces.

[116]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[117]  X. Lou,et al.  All-Inorganic Flexible Embedded Thin-Film Capacitors for Dielectric Energy Storage with High Performance. , 2019, ACS applied materials & interfaces.

[118]  Xubing Lu,et al.  Flexible, Semitransparent, and Inorganic Resistive Memory based on BaTi0.95Co0.05O3 Film , 2017, Advanced materials.

[119]  John A. Rogers,et al.  Mechanics of curvilinear electronics , 2010 .

[120]  P. Chiu,et al.  Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics , 2016 .

[121]  H. Bai,et al.  Uniaxial strain tuning of the Verwey transition in flexible Fe3O4/muscovite epitaxial heterostructures , 2018, Applied Physics Letters.

[122]  Sang-Hoon Bae,et al.  Heterogeneous integration of single-crystalline complex-oxide membranes , 2020, Nature.

[123]  Y. Chueh,et al.  Transparent Flexible Heteroepitaxy of NiO Coated AZO Nanorods Arrays on Muscovites for Enhanced Energy Storage Application. , 2020, Small.

[124]  M. Yoshimoto,et al.  Epitaxial Growth of Bendable Cubic NiO and In_2O_3 Thin Films on Synthetic Mica for p- and n-type Wide-Bandgap Semiconductor Oxides , 2020, MRS Advances.

[125]  Guofu Zhou,et al.  All-inorganic flexible Ba0.67Sr0.33TiO3 thin films with excellent dielectric properties over a wide range of frequencies. , 2019, ACS applied materials & interfaces.

[126]  Zhongshuai Liang,et al.  Atomic Scale Understanding of the Epitaxy of Perovskite Oxides on Flexible Mica Substrate , 2019, Advanced Materials Interfaces.

[127]  Xihong Hao,et al.  Multifunctional All-Inorganic Flexible Capacitor for Energy Storage and Electrocaloric Refrigeration over a Broad Temperature Range Based on PLZT 9/65/35 Thick Films. , 2019, ACS applied materials & interfaces.

[128]  R. Yakimova,et al.  Donor-doped ZnO thin films on mica for fully-inorganic flexible thermoelectrics , 2019, Materials Research Letters.

[129]  Sang-Hoon Bae,et al.  Integration of bulk materials with two-dimensional materials for physical coupling and applications , 2019, Nature Materials.

[130]  Hong Wang,et al.  Flexible mica films for high-temperature energy storage , 2018, Journal of Materiomics.

[131]  P. Gao,et al.  Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films , 2017, Nature Communications.

[132]  K. Sunouchi,et al.  Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy , 1985 .

[133]  C. Ha,et al.  Polymers for flexible displays: From material selection to device applications , 2008 .

[134]  Changhong Yang,et al.  Flexible, Temperature-Resistant, and Fatigue-Free Ferroelectric Memory Based on Bi(Fe0.93Mn0.05Ti0.02)O3 Thin Film. , 2019, ACS applied materials & interfaces.

[135]  John A. Rogers,et al.  Bendable single crystal silicon thin film transistors formed by printing on plastic substrates , 2005 .

[136]  Z. Mei,et al.  Flexible Transparent InGaZnO Thin-Film Transistors on Muscovite Mica , 2019, IEEE Transactions on Electron Devices.

[137]  Chunrui Ma,et al.  Flexible Lithium Ferrite Nanopillar Arrays for Bending Stable Microwave Magnetism. , 2018, ACS Applied Materials and Interfaces.

[138]  William S. Wong,et al.  Damage-free separation of GaN thin films from sapphire substrates , 1998 .

[139]  Arnan Mitchell,et al.  Two dimensional and layered transition metal oxides , 2016 .

[140]  Sujuan Wu,et al.  A Flexible Strain Sensor of Ba(Ti, Nb)O3/Mica with a Broad Working Temperature Range , 2019, Advanced Materials Technologies.