Electrical responses from diabetic retina

Diabetic retinopathy has long been considered to be a retinal manifestation of systemic diabetic angiopathy. Indeed, it is therapeutically true. However, the prolongation of OP peak latency in diabetic eyes without any angiographic evidence of angiopathy leads us to presume that certain neuronal disorders occur early in diabetic eyes. Even though we cannot neglect the possibility that the prolongation of the OP peak latency may derive from undetectable retinal hypoperfusion, it is still far from conventional diabetic angiopathy. Rather, the status should be properly termed "intraretinal diabetic neuropathy" in that the neurones are the disturbed cells to cause visual dysfunction. Thereafter, the OP amplitude diminishes as retinopathy advances, probably depending on the degree of retinal circulatory disturbance. Marked diminution of the OP amplitude predicts rapid progression and poor prognosis of retinopathy. Diabetic retinal pigment epitheliopathy as manifested by one of our non-photic EOG responses is another kind of early ocular involvement of diabetes. Because its mechanisms are not yet known, so far we have not succeeded in correlating it to any kind of subjective visual index. Routine fundus inspection or fluorescent fundus angiography is incapable of detecting the compromised neural retina and/or retinal pigment epithelial integrity and thus the electrophysiology of vision has the edge in ophthalmology.

[1]  E. Gregersen TRANSACTIONS OF THE DANISH OPHTHALMOLOGICAL SOCIETY , 1965, Acta ophthalmologica.

[2]  J. Brunette,et al.  Effects of Calcitonin gene-related peptide on the rabbit electroretinogram , 1993, Neuropeptides.

[3]  Y. Zeevi,et al.  Changes in the oscillatory potentials of the electroretinogram in glaucoma. , 1987, Current eye research.

[4]  G B Arden,et al.  The electroretinogram in diabetic retinopathy. , 1999, Survey of ophthalmology.

[5]  L. Wachtmeister Spatial characteristics of the oscillatory potentials of the electroretinogram , 1986, Acta ophthalmologica.

[6]  D. Hamasaki,et al.  Responses of the pigmented rabbit retina to NMPTP, a chemical inducer of parkinsonism. , 1985, Experimental eye research.

[7]  E. Adachi-Usami,et al.  [Effects of MPTP on the mouse retina]. , 1992, Nippon Ganka Gakkai zasshi.

[8]  R. Steinberg,et al.  Mechanisms of effects of small hyperosmotic gradients on the chick RPE. , 1987, Investigative ophthalmology & visual science.

[9]  D. Thompson,et al.  A review of the clinical applications of the pattern electroretinogram , 1989, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[10]  R S Harwerth,et al.  The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. , 1996, Investigative ophthalmology & visual science.

[11]  J. Price,et al.  Oscillatory potentials. History, techniques and potential use in the evaluation of disturbances of retinal circulation. , 1981, Survey of ophthalmology.

[12]  R M Glantz,et al.  The spatiotemporal transfer function of crayfish lamina monopolar neurons. , 1994, Journal of neurophysiology.

[13]  G. C. Palmer,et al.  Streptozotocin-induced diabetes produces alterations in adenylate cyclase in rat cerebrum, cerebral microvessels and retina. , 1983, Life sciences.

[14]  M. C. Citron,et al.  Modification of electroretinograms in dopamine-depleted retinas , 1985, Brain Research.

[15]  M. Sandberg,et al.  Effects of 2-amino-4-phosphonobutyric acid (APB) and glycine on the oscillatory potentials of the rat electroretinogram. , 1989, Experimental eye research.

[16]  C. Nishimura,et al.  Alterations in the Retinal Dopaminergic Neuronal System in Rats with Streptozotocin‐Induced Diabetes , 1985, Journal of neurochemistry.

[17]  W. C. Parkinson,et al.  Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture , 1992, Acta ophthalmologica.

[18]  D. Foster,et al.  Comparison of colour discrimination and electroretinography in evaluation of visual pathway dysfunction in aretinopathic IDDM patients. , 1995, The British journal of ophthalmology.

[19]  J. Lovasik,et al.  The effects of altered retinal vascular perfusion pressure on the white flash scotopic ERG and oscillatory potentials in man. , 1990, Electroencephalography and clinical neurophysiology.

[20]  M. Palta,et al.  Electroretinographic Oscillatory Potentials Predict Progression of Diabetic Retinopathy: Preliminary Report , 1984 .

[21]  K. Doi [Studies on the mechanism of the diabetogenic activity of streptozotocin and on the ability of compounds to block the diabetogenic activity of streptozotocin (author's transl)]. , 1975, Nihon Naibunpi Gakkai zasshi.

[22]  A. Moskowitz,et al.  Contrast sensitivity in diabetics with and without background retinopathy. , 1985, Archives of ophthalmology.

[23]  D. Yonemura,et al.  CLINICAL IMPORTANCE OF THE OSCILLATORY POTENTIAL IN THE HUMAN ERG , 1962, Acta ophthalmologica. Supplementum.

[24]  J. Babel,et al.  In vivo effects of glycine on retinal ultrastructure and averaged electroretinogram , 1975, Brain Research.

[25]  L. Wachtmeister,et al.  The postnatal development of the oscillatory potentials of the electroretinogram II. Photopic characteristics , 1991, Acta ophthalmologica.

[26]  H. Kergoat,et al.  Unilateral ocular vascular stress in man and retinal responsivity in the contralateral eye , 1994, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[27]  L. Wachtmeister,et al.  Spatial properties of the oscillatory potentials of the frog electroretinogram in relation to state of adaptation , 1987, Acta ophthalmologica.

[28]  W Seiple,et al.  A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. , 1992, Investigative ophthalmology & visual science.

[29]  K. Kawasaki,et al.  Hyperosmolarity-Induced Changes in the Transepithelial Potential of the Human and Frog Retinae , 1983 .

[30]  M. Neal,et al.  Nitric oxide inhibits depolarization-induced release of endogenous dopamine in the rabbit retina , 1995, Neuroscience Letters.

[31]  T. Hirose,et al.  Oscillatory potential of the electroretinogram: relationships to the photopic b-wave in humans. , 1967, Archives of ophthalmology.

[32]  London,et al.  Textbook of the Fundus of the Eye , 1971 .

[33]  D. Hamasaki,et al.  Alterations of the cat's electroretinogram induced by the lesioning of the indoleamine-accumulating amacrine cells. , 1990, Ophthalmic research.

[34]  V. Tran,et al.  Differential localization of dopamine D1 and D2 receptors in rat retina. , 1992, Investigative ophthalmology & visual science.

[35]  F. Werblin,et al.  Direct excitatory and lateral inhibitory synaptic inputs to amacrine cells in the tiger salamander retina , 1987, Brain Research.

[36]  I. Goldstein,et al.  Nitric Oxide: A Review of Its Role in Retinal Function and Disease , 1996, Vision Research.

[37]  Robert A. Linsenmeier,et al.  Chapter 2 Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram , 1985 .

[38]  M. Gjötterberg,et al.  THE ELECTRORETINOGRAM IN DIABETIC RETINOPATHY , 1974, Acta ophthalmologica.

[39]  M. Fukuda Classification and treatment of diabetic retinopathy. , 1994, Diabetes research and clinical practice.

[40]  R. Linsenmeier,et al.  Mechanisms of hypoxic effects on the cat DC electroretinogram. , 1986, Investigative ophthalmology & visual science.

[41]  C. Barber,et al.  Changes in the oscillatory potential in relation to different features of diabetic retinopathy. , 1971, Advances in experimental medicine and biology.

[42]  V. Porciatti,et al.  Nonselective Loss of Contrast Sensitivity in Visual System Testing in Early Type I Diabetes , 1992, Diabetes Care.

[43]  F S Werblin,et al.  The spatial distribution of excitatory and inhibitory inputs to ganglion cell dendrites in the tiger salamander retina , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  D. Albert,et al.  Principles and practice of ophthalmology , 1999 .

[45]  Y. Masuda,et al.  The oscillatory potential in the electroretinogram. , 1963, The Japanese journal of physiology.

[46]  K. Kawasaki,et al.  Electrophysiological study on activities of neuronal and non-neuronal retinal elements in man with reference to its clinical application , 1978 .

[47]  D. Papakostopoulos,et al.  The scotopic electroretinogram to blue flashes and pattern reversal visual evoked potentials in insulin dependent diabetes. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[48]  J. Yudkin,et al.  Pattern electroretinograms become abnormal when background diabetic retinopathy deteriorates to a preproliferative stage: possible use as a screening test. , 1986, The British journal of ophthalmology.

[49]  M Palta,et al.  Predicting progression to severe proliferative diabetic retinopathy. , 1987, Archives of ophthalmology.

[50]  F. K. Northington,et al.  Dopamine-stimulated adenylate cyclase and tyrosine hydroxylase in diabetic rat retina , 1985, Brain Research.

[51]  M. Tamai,et al.  Changes in GABA metabolism in streptozotocin-induced diabetic rat retinas. , 1996, Current eye research.

[52]  Michael Bach,et al.  Principles and practice of clinical electrophysiology of vision , 1991 .

[53]  J. Dowling,et al.  The oscillatory potentials of the mudpuppy retina. , 1978, Investigative ophthalmology & visual science.

[54]  M Palta,et al.  Temporal aspects of the electroretinogram in diabetic retinopathy. , 1987, Archives of ophthalmology.

[55]  E. Zrenner,et al.  Neuromodulatory effects of the renin-angiotensin system on the cat electroretinogram. , 1994, Investigative ophthalmology & visual science.

[56]  H. Gliem,et al.  DIE BIOELEKTRISCHE AKTIVITÄT DER NETZHAUT BEI DER DIABETISCHEN RETINOPATHIE , 1971 .

[57]  K. Tsuzuki,et al.  Electroretinogram in diabetic retinopathy. , 1962, Archives of ophthalmology.

[58]  I. Morgan,et al.  Chapter 8 What do amacrine cells do , 1991 .

[59]  S. Se Prognostic value of ERG (oscillatory potential) in juvenile diabetics. , 1974 .

[60]  J. Brunette,et al.  Oscillatory potentials: a clinical study in diabetics. , 1970, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.