Tight Verifiable Delay Functions

A Verifiable Delay Function (VDF) is a function that takes at least T sequential steps to evaluate and produces a unique output that can be verified efficiently, in time essentially independent of T. In this work we study tight VDFs, where the function can be evaluated in time not much more than the sequentiality bound T.

[1]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[2]  Salil P. Vadhan,et al.  Publicly verifiable proofs of sequential work , 2013, ITCS '13.

[3]  Ghassan O. Karame,et al.  Mirror: Enabling Proofs of Data Replication and Retrievability in the Cloud , 2016, USENIX Security Symposium.

[4]  Silvio Micali,et al.  CS Proofs (Extended Abstracts) , 1994, FOCS 1994.

[5]  Luca De Feo,et al.  Verifiable Delay Functions from Supersingular Isogenies and Pairings , 2019, IACR Cryptol. ePrint Arch..

[6]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[7]  Ronald L. Rivest,et al.  Time-lock Puzzles and Timed-release Crypto , 1996 .

[8]  Joe Kilian,et al.  A note on efficient zero-knowledge proofs and arguments (extended abstract) , 1992, STOC '92.

[9]  Krzysztof Pietrzak,et al.  Simple Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[10]  Johannes A. Buchmann,et al.  A key-exchange system based on imaginary quadratic fields , 1988, Journal of Cryptology.

[11]  Nir Bitansky,et al.  Time-Lock Puzzles from Randomized Encodings , 2016, IACR Cryptol. ePrint Arch..

[12]  Krzysztof Pietrzak,et al.  Simple Proofs of Sequential Work , 2018, IACR Cryptol. ePrint Arch..

[13]  Eli Ben-Sasson,et al.  Scalable Zero Knowledge Via Cycles of Elliptic Curves , 2014, Algorithmica.

[14]  Paul Valiant,et al.  Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Efficiency , 2008, TCC.

[15]  Dan Boneh,et al.  Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[16]  Dan Boneh,et al.  A Survey of Two Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[17]  Nir Bitansky,et al.  Recursive composition and bootstrapping for SNARKS and proof-carrying data , 2013, STOC '13.

[18]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[19]  Nico Döttling,et al.  Incremental Proofs of Sequential Work , 2019, EUROCRYPT.

[20]  Benjamin Wesolowski,et al.  Efficient Verifiable Delay Functions , 2019, Journal of Cryptology.

[21]  David J. Wu,et al.  A Note on the (Im)possibility of Verifiable Delay Functions in the Random Oracle Model , 2019, IACR Cryptol. ePrint Arch..