Hole selective MoOx contact for silicon solar cells.

Using an ultrathin (∼ 15 nm in thickness) molybdenum oxide (MoOx, x < 3) layer as a transparent hole selective contact to n-type silicon, we demonstrate a room-temperature processed oxide/silicon solar cell with a power conversion efficiency of 14.3%. While MoOx is commonly considered to be a semiconductor with a band gap of 3.3 eV, from X-ray photoelectron spectroscopy we show that MoOx may be considered to behave as a high workfunction metal with a low density of states at the Fermi level originating from the tail of an oxygen vacancy derived defect band located inside the band gap. Specifically, in the absence of carbon contamination, we measure a work function potential of ∼ 6.6 eV, which is significantly higher than that of all elemental metals. Our results on the archetypical semiconductor silicon demonstrate the use of nm-thick transition metal oxides as a simple and versatile pathway for dopant-free contacts to inorganic semiconductors. This work has important implications toward enabling a novel class of junctionless devices with applications for solar cells, light-emitting diodes, photodetectors, and transistors.

[1]  J. Brédas,et al.  Nature of the Interfaces Between Stoichiometric and Under‐Stoichiometric MoO3 and 4,4′‐N,N′‐dicarbazole‐biphenyl: A Combined Theoretical and Experimental Study , 2013 .

[2]  P. Yu,et al.  13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. , 2013, ACS nano.

[3]  Jr-hau He,et al.  Above-11%-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. , 2013, Nano letters.

[4]  C. Battaglia,et al.  Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells , 2013 .

[5]  Wenjun Zhang,et al.  High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping , 2013 .

[6]  F. Kang,et al.  Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping , 2013 .

[7]  Shui-Tong Lee,et al.  Efficient organic-inorganic hybrid Schottky solar cell: The role of built-in potential , 2013 .

[8]  Kong Liu,et al.  Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles , 2013, Nanoscale Research Letters.

[9]  M. Reed,et al.  Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. , 2013, Nano letters.

[10]  Baoquan Sun,et al.  Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) , 2013 .

[11]  A. Kahn,et al.  Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications , 2012, Advanced materials.

[12]  P. Yu,et al.  Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency , 2012 .

[13]  Yang Yang,et al.  Solution Processed MoO3 Interfacial Layer for Organic Photovoltaics Prepared by a Facile Synthesis Method , 2012, Advanced materials.

[14]  Zongfu Yu,et al.  Hybrid silicon nanocone-polymer solar cells. , 2012, Nano letters.

[15]  Qiming Liu,et al.  Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells , 2012 .

[16]  Baoquan Sun,et al.  Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application , 2012, Nanotechnology.

[17]  Rusli,et al.  Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10% efficiency. , 2012, ACS applied materials & interfaces.

[18]  Rusli,et al.  Effects of nanowire texturing on the performance of Si/organic hybrid solar cells fabricated with a 2.2 μm thin-film Si absorber , 2012 .

[19]  T. Ren,et al.  Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. , 2012, Nanoscale.

[20]  Hong-Jhang Syu,et al.  Silicon nanowire/organic hybrid solar cell with efficiency of 8.40% , 2012 .

[21]  C. Battaglia,et al.  Geometric light trapping for high efficiency thin film silicon solar cells , 2012 .

[22]  Shui-Tong Lee,et al.  Heterojunction with organic thin layer for three dimensional high performance hybrid solar cells , 2012 .

[23]  Takuya Gotou,et al.  Efficient Crystalline Si/Poly(ethylene dioxythiophene):Poly(styrene sulfonate):Graphene Oxide Composite Heterojunction Solar Cells , 2012 .

[24]  Rusli,et al.  High efficiency planar Si/organic heterojunction hybrid solar cells , 2012 .

[25]  J. Sturm,et al.  Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells , 2011, Advanced materials.

[26]  Shui-Tong Lee,et al.  Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture. , 2011, Journal of the American Chemical Society.

[27]  Hung-Chih Chang,et al.  Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting. , 2011, ACS nano.

[28]  R. O’Hayre,et al.  Solution processing of transparent conductors: from flask to film. , 2011, Chemical Society reviews.

[29]  Liwei Chen,et al.  Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells. , 2011, Nanoscale.

[30]  Rusli,et al.  Simple Approach of Fabricating High Efficiency Si Nanowire/Conductive Polymer Hybrid Solar Cells , 2011, IEEE Electron Device Letters.

[31]  Rusli,et al.  Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells , 2011 .

[32]  Christoph J. Brabec,et al.  High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension , 2011 .

[33]  C. Battaglia,et al.  Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes , 2011 .

[34]  Xiong Gong,et al.  Efficient, Air‐Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer , 2011, Advanced materials.

[35]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[36]  Shui-Tong Lee,et al.  Air Stable, Efficient Hybrid Photovoltaic Devices Based on Poly(3-hexylthiophene) and Silicon Nanostructures , 2011 .

[37]  Yi Jia,et al.  Graphene‐On‐Silicon Schottky Junction Solar Cells , 2010, Advanced materials.

[38]  A. Kahn,et al.  Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces , 2010 .

[39]  Wolfgang Kowalsky,et al.  Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films , 2009 .

[40]  S. W. Cho,et al.  The origin of the hole injection improvements at indium tin oxide/ molybdenum trioxide/N,N' -bis(1-naphthyl)-N,N' -diphenyl-1,1' '-biphenyl-4,4'-diamine interfaces , 2008 .

[41]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[42]  C. Körber,et al.  Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. , 2008, Physical review letters.

[43]  Stephen R. Forrest,et al.  White Stacked Electrophosphorescent Organic Light‐Emitting Devices Employing MoO3 as a Charge‐Generation Layer , 2006 .

[44]  Chieh-Wei Chen,et al.  High-performance organic thin-film transistors with metal oxide/metal bilayer electrode , 2005 .

[45]  Shizuo Tokito,et al.  Metal oxides as a hole-injecting layer for an organic electroluminescent device , 1996 .

[46]  S. Seal,et al.  Nature of the use of adventitious carbon as a binding energy standard , 1995 .

[47]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[48]  F. Werfel,et al.  Photoemission study of the electronic structure of Mo and Mo oxides , 1983 .

[49]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[50]  Y. Baer The natural energy scale for XPS spectra of metals , 1976 .

[51]  J. Sturm,et al.  A 12% Efficient Silicon/PEDOT:PSS Heterojunction Solar Cell Fabricated at < 100 °C , 2014, IEEE Journal of Photovoltaics.

[52]  Zheng-Hong Lu,et al.  Universal energy-level alignment of molecules on metal oxides. , 2011, Nature materials.

[53]  J. Purans,et al.  XAFS Studies of Octahedral Amorphous Oxides , 1993 .