A predicting model for properties of steel using the industrial big data based on machine learning

[1]  Nirupam Chakraborti,et al.  Evolutionary Data Driven Modeling and Multi Objective Optimization of Noisy Data Set in Blast Furnace Iron Making Process , 2018 .

[2]  Debanjana Bhattacharyya,et al.  Data‐Driven Bi‐Objective Genetic Algorithms EvoNN Applied to Optimize Dephosphorization Process during Secondary Steel Making Operation for Producing LPG (Liquid Petroleum Gas Cylinder) Grade of Steel , 2018 .

[3]  Nirupam Chakraborti,et al.  Combined machine learning and CALPHAD approach for discovering processing-structure relationships in soft magnetic alloys , 2017, Computational Materials Science.

[4]  R. Olshen,et al.  Points of Significance: Classification and regression trees , 2017, Nature Methods.

[5]  Snehanshu Pal,et al.  Optimization of Phosphorous in Steel Produced by Basic Oxygen Steel Making Process Using Multi‐Objective Evolutionary and Genetic Algorithms , 2017 .

[6]  Mikko Helle,et al.  Feasibility study of woody-biomass use in a steel plant through process integration , 2017 .

[7]  Nirupam Chakraborti,et al.  A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem , 2017 .

[8]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[9]  Nicola Nosengo,et al.  Can artificial intelligence create the next wonder material? , 2016, Nature.

[10]  A. Choudhary,et al.  Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters , 2014, Integrating Materials and Manufacturing Innovation.

[11]  Frank Pettersson,et al.  Genetic Programming Evolved through Bi-Objective Genetic Algorithms Applied to a Blast Furnace , 2013 .

[12]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[13]  Liping Yu,et al.  Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. , 2012, Physical review letters.

[14]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[15]  Shuang Jia,et al.  Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. , 2010, Nature materials.

[16]  R. Brereton,et al.  Support vector machines for classification and regression. , 2010, The Analyst.

[17]  M. Klintenberg,et al.  Data mining and accelerated electronic structure theory as a tool in the search for new functional materials , 2008, 0808.2125.

[18]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[19]  F. Pettersson,et al.  Neural Networks Analysis of Steel Plate Processing Augmented by Multi‐objective Genetic Algorithms , 2007 .

[20]  K. Reifsnider,et al.  On nonlinear behavior in brittle heterogeneous materials , 2006 .

[21]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[22]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[23]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[24]  E. A. Starke,et al.  Progress in structural materials for aerospace systems , 2003 .

[25]  L. Breiman Random Forests , 2001, Machine Learning.

[26]  Thomas F. Coleman,et al.  A Preconditioned Conjugate Gradient Approach to Linear Equality Constrained Minimization , 2001, Comput. Optim. Appl..

[27]  William D. Callister,et al.  Materials Science and Engineering - An Introduction (5th ed.) , 2000 .

[28]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[29]  Sunghak Lee,et al.  Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls. Part II. Fracture behavior , 1998 .

[30]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Simmons,et al.  Overview: high-nitrogen alloying of stainless steels , 1996 .

[32]  P. Kao,et al.  The effect of alloying elements on the structure and mechanical properties of ultra low carbon bainitic steels , 1993, Journal of Materials Science.

[33]  I. Peterson,et al.  Organic Materials for Nonlinear Optics , 1988 .

[34]  A. L. Edwards,et al.  An introduction to linear regression and correlation. , 1985 .

[35]  L.-Å. Norström The influence of nitrogen and grain size on yield strength in Type AISI 316L austenitic stainless steel , 1977 .

[36]  W. GOWLAND,et al.  The Metallurgy of Iron and Steel , 1895, Nature.

[37]  Sun Ying Effect of carbon content and microstructure on the yield-strength ratio of steel , 2009 .

[38]  Frank Pettersson,et al.  A genetic algorithms based multi-objective neural net applied to noisy blast furnace data , 2007, Appl. Soft Comput..

[39]  Will N. Browne,et al.  The Development of an Industrial Learning Classifier System for Data-Mining in a Steel Hop Strip Mill , 2004 .

[40]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[41]  S. Gunn,et al.  Support Vector Machines for Classification and Regression , 1998 .

[42]  Djc MacKay,et al.  Neural network analysis of steel plate processing , 1998 .

[43]  O. Axelsson,et al.  Preconditioned Conjugate Gradient Methods , 1990 .

[44]  J. Devaux,et al.  A theoretical and numerical approach to the plastic behaviour of steels during phase transformations—II. Study of classical plasticity for ideal-plastic phases , 1986 .