A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells

We demonstrate efficient planar perovskite solar cells using a dopant-free donor–acceptor (D–A) conjugated small molecule as a hole transport material. The photovoltaic cell reaches a power conversion efficiency (PCE) of 14.9%, which is comparable to or even better than that of the devices using the traditional doped 2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) hole transport material under equivalent conditions. We ascribe the high performance to the excellent charge transporting properties of the D–A conjugated small molecule. Time-resolved photoluminescence (PL), transient photocurrent response, and impedance spectroscopy characterization indicate that this D–A conjugated small molecule plays a key role in hole collection and extraction in perovskite based photovoltaic devices. The dopant-free D–A small molecule hole transport material used here not only improves the efficiency, but also facilitates the fabrication process and thus potentially reduces the fabrication cost of perovskite solar cells.

[1]  Licheng Sun,et al.  Novel Small Molecular Materials Based on Phenoxazine Core Unit for Efficient Bulk Heterojunction Organic Solar Cells and Perovskite Solar Cells , 2015 .

[2]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[3]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[4]  Qi Chen,et al.  Integrated perovskite/bulk-heterojunction toward efficient solar cells. , 2015, Nano letters.

[5]  Y. Qi,et al.  Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films , 2015 .

[6]  Q. Meng,et al.  Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. , 2014, Chemical communications.

[7]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[8]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[9]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[10]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[11]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[12]  S. Zakeeruddin,et al.  Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells , 2014 .

[13]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[14]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[15]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[16]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[17]  M. Grätzel,et al.  Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. , 2014, Journal of the American Chemical Society.

[18]  C. Soci,et al.  Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells , 2014 .

[19]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[20]  L. Etgar,et al.  Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[21]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[22]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[23]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[24]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[25]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[26]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[27]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[28]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[29]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[30]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[31]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[32]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[33]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[34]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[35]  Yang Yang,et al.  Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency , 2013, Scientific Reports.

[36]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[37]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[38]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[39]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[40]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[41]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[42]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[43]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[44]  Taiho Park,et al.  Charge Density Dependent Mobility of Organic Hole‐Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye‐Sensitized and Organic Solar Cells , 2013, Advanced materials.

[45]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[46]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[47]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[48]  J. Teuscher,et al.  Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[49]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[50]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[51]  J. Bloking,et al.  Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. , 2012, ACS nano.

[52]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[53]  L. Feldman,et al.  Observation of long-range exciton diffusion in highly ordered organic semiconductors. , 2010, Nature materials.

[54]  T. Saga Advances in crystalline silicon solar cell technology for industrial mass production , 2010 .

[55]  M. Ozaki,et al.  MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells , 2009 .

[56]  Xiao Wei Sun,et al.  An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer , 2009 .

[57]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[58]  B. de Boer,et al.  Effect of traps on the performance of bulk heterojunction organic solar cells , 2007 .

[59]  K. Walzer,et al.  Highly efficient organic devices based on electrically doped transport layers. , 2007, Chemical reviews.