Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes.

G protein-coupled receptors (GPCRs) are essential components of cellular signaling pathways. They are the targets of many current pharmaceuticals and are postulated to dimerize or oligomerize in cellular membranes in conjunction with their functional mechanisms. We demonstrate using fluorescence resonance energy transfer how association of rhodopsin occurs by long-range lipid-protein interactions due to geometrical forces, yielding greater receptor crowding. Constitutive association of rhodopsin is promoted by a reduction in membrane thickness (hydrophobic mismatch), but also by an increase in protein/lipid molar ratio, showing the importance of interactions extending well beyond a single annulus of boundary lipids. The fluorescence data correlate with the pK(a) for the MI-to-MII transition of rhodopsin, where deprotonation of the retinylidene Schiff base occurs in conjunction with helical movements leading to activation of the photoreceptor. A more dispersed membrane environment optimizes formation of the MII conformation that results in visual function. A flexible surface model explains both the dispersal and activation of rhodopsin in terms of bilayer curvature deformation (strain) and hydrophobic solvation energy. The bilayer stress is related to the lateral pressure profile in terms of the spontaneous curvature and associated bending rigidity. Transduction of the strain energy (frustration) of the bilayer drives protein oligomerization and conformational changes in a coupled manner. Our findings illuminate the physical principles of membrane protein association due to chemically nonspecific interactions in fluid lipid bilayers. Moreover, they yield a conceptual framework for understanding how the tightly regulated lipid compositions of cellular membranes influence their protein-mediated functions.

[1]  P. Bovee-Geurts,et al.  Reversible modulation of rhodopsin photolysis in pure phosphatidylserine membranes , 1983 .

[2]  Kai Simons,et al.  Model systems, lipid rafts, and cell membranes. , 2004, Annual review of biophysics and biomolecular structure.

[3]  H. Saibil,et al.  Biophysics: is rhodopsin dimeric in native retinal rods? , 2003, Nature.

[4]  P. Booth Sane in the membrane: designing systems to modulate membrane proteins. , 2005, Current opinion in structural biology.

[5]  R. Mathies,et al.  Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Vesselin N. Paunov,et al.  Stresses in lipid membranes and interactions between inclusions , 1995 .

[7]  M. Straume,et al.  Interconversion of metarhodopsins I and II: a branched photointermediate decay model. , 1990, Biochemistry.

[8]  A. Lamola,et al.  Effects of detergents and high pressures upon the metarhodopsin I--metarhodopsin II equilibrium. , 1974, Biochemistry.

[9]  K. Palczewski,et al.  Signaling States of Rhodopsin , 2003, The Journal of Biological Chemistry.

[10]  S. Dodd,et al.  Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. , 2000, Biophysical journal.

[11]  P. van Breugel,et al.  Biochemical aspects of the visual process. XXXVIII. Effects of lateral aggregation on rhodopsin in phospholipase C-treated photoreceptor membranes. , 1978, Biochimica et biophysica acta.

[12]  E. Racker,et al.  Effect of lipid composition on the calcium/adenosine 5'-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. , 1984, Biochemistry.

[13]  J. Bowie Solving the membrane protein folding problem , 2005, Nature.

[14]  M. Bloom,et al.  Mattress model of lipid-protein interactions in membranes. , 1984, Biophysical journal.

[15]  G. Salgado,et al.  Solid-state 2H NMR structure of retinal in metarhodopsin I. , 2006, Journal of the American Chemical Society.

[16]  K. Nakanishi,et al.  Movement of retinal along the visual transduction path. , 2000, Science.

[17]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[18]  J. Seddon,et al.  Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. , 1990, Biochimica et biophysica acta.

[19]  T. Mielke,et al.  Rhodopsin photoproducts in 2D crystals. , 2004, Journal of molecular biology.

[20]  S. Gruner Stability of lyotropic phases with curved interfaces , 1989 .

[21]  Krzysztof Palczewski,et al.  Oligomerization of G protein-coupled receptors: past, present, and future. , 2004, Biochemistry.

[22]  T. Weiss,et al.  Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. , 1999, Biophysical journal.

[23]  D. Engelman,et al.  Pair distribution functions of bacteriorhodopsin and rhodopsin in model bilayers. , 1983, Biophysical journal.

[24]  J. Killian,et al.  Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. , 2004, Biochimica et biophysica acta.

[25]  Boris Martinac,et al.  Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating , 2002, Nature Structural Biology.

[26]  Hee-Yong Kim,et al.  Reduced G Protein-coupled Signaling Efficiency in Retinal Rod Outer Segments in Response to n-3 Fatty Acid Deficiency* , 2004, Journal of Biological Chemistry.

[27]  D. C. Mitchell,et al.  Effect of packing density on rhodopsin stability and function in polyunsaturated membranes. , 2005, Biophysical journal.

[28]  G. Wikander,et al.  Phase equilibria of membrane lipids from Acholeplasma laidlawii: importance of a single lipid forming nonlamellar phases. , 1986, Biochemistry.

[29]  K. Fahmy,et al.  Transducin-dependent protonation of glutamic acid 134 in rhodopsin. , 2000, Biochemistry.

[30]  I. Alves,et al.  Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. , 2005, Biophysical journal.

[31]  Stephen T. Hyde,et al.  The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology , 1996 .

[32]  D. Engelman,et al.  Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses. , 1983, Journal of molecular biology.

[33]  R. Lefkowitz,et al.  Signalling: Seven-transmembrane receptors , 2002, Nature Reviews Molecular Cell Biology.

[34]  Susan R. George,et al.  G-Protein-coupled receptor oligomerization and its potential for drug discovery , 2002, Nature Reviews Drug Discovery.

[35]  N. Ryba,et al.  Protein rotational diffusion and lipid/protein interactions in recombinants of bovine rhodopsin with saturated diacylphosphatidylcholines of different chain lengths studied by conventional and saturation-transfer electron spin resonance. , 1992, Biochemistry.

[36]  M. Edidin The state of lipid rafts: from model membranes to cells. , 2003, Annual review of biophysics and biomolecular structure.

[37]  A. Engel,et al.  Detecting molecular interactions that stabilize native bovine rhodopsin. , 2006, Journal of molecular biology.

[38]  P. A. Fortes,et al.  Rhodopsin in reconstituted phospholipid vesicles. 2. Rhodopsin-rhodopsin interactions detected by resonance energy transfer. , 1983, Biochemistry.

[39]  A. Watts,et al.  Rhodopsin-lipid associations in bovine rod outer segment membranes. Identification of immobilized lipid by spin-labels. , 1979, Biochemistry.

[40]  Walter Richtering,et al.  The Colloidal Domain – where physics, chemistry, biology and technology meet , 2001 .

[41]  N. J. Gibson,et al.  Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. , 1993, Biochemistry.

[42]  J. Killian,et al.  Hydrophobic mismatch between proteins and lipids in membranes. , 1998, Biochimica et biophysica acta.

[43]  H. Mcconnell,et al.  Theory of protein-lipid and protein-protein interactions in bilayer membranes. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Sheves,et al.  Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base. , 2001, Biochemistry.

[45]  O. Andersen,et al.  Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. , 2000, Biophysical journal.

[46]  L. P. Murray,et al.  Energy storage in the primary photochemical events of rhodopsin and isorhodopsin. , 1987, Biochemistry.

[47]  K. Palczewski,et al.  Diversifying the repertoire of G protein-coupled receptors through oligomerization. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  W. Hubbell,et al.  Effects of lipid environment on the light-induced conformational changes of rhodopsin. 1. Absence of metarhodopsin II production in dimyristoylphosphatidylcholine recombinant membranes. , 1985, Biochemistry.

[49]  L. Tamm,et al.  Elastic coupling of integral membrane protein stability to lipid bilayer forces , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Huber,et al.  Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. , 2004, Biophysical journal.

[51]  Krzysztof Palczewski,et al.  Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes* , 2003, Journal of Biological Chemistry.

[52]  A. Cooper Energy uptake in the first step of visual excitation , 1979, Nature.

[53]  E. Dratz,et al.  Thermotropic behavior of retinal rod membranes and dispersions of extracted phospholipids , 2005, The Journal of Membrane Biology.

[54]  G. Salgado,et al.  Deuterium NMR structure of retinal in the ground state of rhodopsin. , 2004, Biochemistry.

[55]  O. Lichtarge,et al.  Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F , 1996, Nature.

[56]  Ole G Mouritsen,et al.  Lipids do influence protein function-the hydrophobic matching hypothesis revisited. , 2004, Biochimica et biophysica acta.

[57]  T. Mielke,et al.  Electron crystallography reveals the structure of metarhodopsin I , 2004, The EMBO journal.

[58]  Alfonso Valencia,et al.  Identification of amino acid residues crucial for chemokine receptor dimerization , 2004, Nature Immunology.

[59]  Yoshinori Shichida,et al.  Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  T. Sakmar,et al.  Rhodopsin: insights from recent structural studies. , 2002, Annual review of biophysics and biomolecular structure.

[61]  S. Safran,et al.  Interaction between inclusions embedded in membranes. , 1996, Biophysical journal.

[62]  Michel Bouvier,et al.  Oligomerization of G-protein-coupled transmitter receptors , 2001, Nature Reviews Neuroscience.

[63]  W. Hubbell Characterization of rhodopsin in synthetic systems , 1975 .

[64]  J. Schutzbach,et al.  Activation of mannosyltransferase II by nonbilayer phospholipids , 1984 .

[65]  Z. Salamon,et al.  Plasmon resonance spectroscopy: probing molecular interactions within membranes. , 1999, Trends in biochemical sciences.

[66]  P. Liebman,et al.  Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions. , 1984, Biochemistry.

[67]  R. Thurmond,et al.  Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. , 2002, Biochemistry.

[68]  J. Israelachvili Intermolecular and surface forces , 1985 .

[69]  D. Kliger,et al.  Proton transfer reactions linked to rhodopsin activation. , 1998, Biochemistry.

[70]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[71]  U. Olsson,et al.  Globular and bicontinuous phases of nonionic surfactant films , 1994 .

[72]  M. Montal,et al.  Rhodopsin in reconstituted phospholipid vesicles. 1. Structural parameters and light-induced conformational changes detected by resonance energy transfer and fluorescence quenching. , 1983, Biochemistry.

[73]  Steffen Lüdeke,et al.  The role of Glu181 in the photoactivation of rhodopsin. , 2005, Journal of molecular biology.

[74]  J. Rotmans,et al.  Biochemical aspects of the visual process. XXVII. Stereospecificity of ocular retinol dehydrogenases and the visual cycle. , 1970, Biochimica et biophysica acta.

[75]  A. Engel,et al.  Atomic-force microscopy: Rhodopsin dimers in native disc membranes , 2003, Nature.

[76]  P. Wolber,et al.  An analytic solution to the Förster energy transfer problem in two dimensions. , 1979, Biophysical journal.

[77]  A. Engel,et al.  The G protein‐coupled receptor rhodopsin in the native membrane , 2004, FEBS letters.

[78]  J. S. Hyde,et al.  Spin-label saturation-transfer electron spin resonance detection of transient association of rhodopsin in reconstituted membranes. , 1982, Biochemistry.

[79]  M. Tate,et al.  Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. , 1993, Biophysical journal.

[80]  M. le Maire,et al.  Monomeric G-protein-coupled receptor as a functional unit. , 2005, Biochemistry.

[81]  T. Thorgeirsson,et al.  Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. , 1993, Biochemistry.

[82]  D. Kliger,et al.  Rhodopsin photointermediates in two-dimensional crystals at physiological temperatures. , 2006, Biochemistry.

[83]  A. Hirshfeld,et al.  Coupling of retinal isomerization to the activation of rhodopsin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[85]  J. Beach,et al.  Lipid-protein interactions mediate the photochemical function of rhodopsin. , 1988, Biochemistry.

[86]  H Gobind Khorana,et al.  Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. , 2003, Advances in protein chemistry.

[87]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[88]  W. Hubbell,et al.  Effects of lipid environment on the light-induced conformational changes of rhodopsin. 2. Roles of lipid chain length, unsaturation, and phase state. , 1985, Biochemistry.

[89]  A. Kenworthy,et al.  High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. , 2000, Molecular biology of the cell.

[90]  M. Brown,et al.  Modulation of Rhodopsin Function by Properties of the Membrane Bilayer , 2022 .

[91]  M. Montal,et al.  Rhodopsin-G-protein interactions monitored by resonance energy transfer. , 1989, Biochemistry.

[92]  R. Cantor,et al.  The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. , 1999, Chemistry and physics of lipids.

[93]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[94]  Z. Salamon,et al.  Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films. , 1996, Biophysical journal.

[95]  K. Hofmann,et al.  Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Håkan Wennerström,et al.  The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet , 1994 .

[97]  Rahul S Rajan,et al.  Suppression of Wild-type Rhodopsin Maturation by Mutants Linked to Autosomal Dominant Retinitis Pigmentosa* , 2005, Journal of Biological Chemistry.

[98]  A. Engel,et al.  Functional and Structural Characterization of Rhodopsin Oligomers* , 2006, Journal of Biological Chemistry.

[99]  S. May,et al.  Molecular theory of lipid-protein interaction and the Lalpha-HII transition. , 1999, Biophysical journal.

[100]  Krzysztof Palczewski,et al.  Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. , 2006, Current opinion in structural biology.

[101]  Ken A Dill,et al.  Modeling water, the hydrophobic effect, and ion solvation. , 2005, Annual review of biophysics and biomolecular structure.

[102]  Anthony G Lee,et al.  How lipids affect the activities of integral membrane proteins. , 2004, Biochimica et biophysica acta.